The Inaugural Lectures are given by honored faculty members within the University who have obtained the rank of full professor. This event gives the honoree an opportunity to deliver a lecture to fellow faculty and other university guests concerning his/her work and research interests.

The content of the lecture typically includes a summary of the evolution and nature of the honoree's specialized field, highlights some of the general issues of that particular field, and a description of how the honoree situates his/her work within their field.

UPM conducts this event to highlight and bring attention to the scholarly work that is being by its distinguished faculty and to illustrate how the work contributes to mankind as a whole.
Land Application of Agricultural & Industrial By-products
Solid Waste Management
Land Application of Agricultural & Industrial By-products

Professor Dr. Che Fauziah Ishak
PhD. (University of Georgia, USA), MS, BS (University of Iowa, USA)

9 March 2018
Dewan Pertanian • Faculty of Agriculture
Universiti Putra Malaysia
Contents

Abstract 1

Introduction 3

Sources of Trace Metal(loid)s in the Soil System 5

Establishment of Investigation Levels of Selected Trace Metal(loid)s in Malaysian Soils 10

Assessment of the Suitability of By-products to be Land-Applied 11

Utilization of By-products for In-situ Immobilization Technique 25

Issues Pertaining to Immobilization Technique 61

Conclusion 61

References 62

Biography 67

Acknowledgements 71

List of Inaugural Lectures 73
ABSTRACT

The generation of industrial wastes shows an increasing trend throughout the world including Malaysia. Recycling of these wastes or by-products on land is the most economically feasible. However, the presence of trace metal(loid)s is an issue of concern. Therefore, these by-products need to be assessed in terms of trace metal(loid)s content and their bioavailability before they can be land–applied. Bioavailability of trace metal(loid)s in the soil system can be transferred to the food chain via plant uptake and leaching to ground water or transported via surface runoffs to water bodies. Thus, the ultimate goal of remediation is to reduce the transfer of trace metal(loid)s to the food chain. One of the remediation method recommended is the in-situ immobilization technique. In this technique, the remediation of trace metal(loid)s-rich or contaminated soils will be through manipulating their bioavailability by using a range of soil amendments such as liming materials, organic materials or biosolids, phosphate compounds and metal oxides (Fe-rich materials). The soil chemical processes exploited to immobilize metal(loid)s in-situ are the adsorption and precipitation processes.
INTRODUCTION

Just like many industrialized countries in the world, Malaysia is also facing problems of the disposal of industrial waste. Instead of leaving the waste as stack within the vicinity of the industrial plant or sending the waste to hazardous waste landfill which is costly, the waste should be assessed for its suitability for land application. Land application or recycling the wastes on land is perhaps the most economical or cost-effective in terms of utilization.

The main constraint of land application of industrial by-products is the trace metal(loid)s present in the by-products. Thus, most of the industrial by-products are categorized as scheduled waste. Agricultural by-products, on the other hand, tend to have lower trace metal(loid)s content and the issue of metal(loid)s content rarely arise. When the industrial by-products are applied to agricultural land, the trace metal(loid)s can be taken up by the plant and affect the quality of the produce in terms of trace metal(loid)s content. Trace metal content in agricultural produce is one of the food safety issue which is gaining prominence.

Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time unless transported out of the site. Also, trace metal(loid)s can exist naturally in the soil system from the minerals present in the parent materials from which the soil was derived and introduced to the soil system via anthropogenic activities such as agriculture inputs. Therefore, there is a need to establish a baseline or background levels of trace metal(loid)s in the soil system.

The trace metal(loid)s of concern in the food chain are As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Fe and Zn. Of these, Cd is of most concern because its transfer from soils to the edible portions of agricultural food crops is significantly greater than for other elements and can be hazardous to human health at very low level.
According to WHO, the maximum daily requirement for human intake is 3 mg per kg of body weight. The main pathway by which trace metal(loids) end up in the human body is via the food chain. One of the pathway is through consumption of plants with high levels of these metal(loids).

After the establishment of the soil baseline or background value, the next phase of research is to assess the suitability of the industrial by-products for land application, especially agricultural land as these by-products can also contribute to plant nutrients content to the soil system, hence improve the fertility status of the soil. The environmental impact of these by-products application also need to be investigated due to the trace metal(loids) content. The by-products that have been assessed this far are industrial biosolids such as sewage sludge, paper mill sludge and coal fly ash, and the mineral by-products such as red gypsum and water treatment residues.

The next phase of research is to assess the capability of the by-products to remediate soils rich or contaminated with trace metal(loids). Although these by-products contain certain levels of trace metal(loids), they do have unique characteristics which enable them to inhibit metal(loids) mobility in the soil system. The focus of the research is on in-situ immobilization technique of metal(loids) in the soil system. The by-products utilized can be classified as liming materials, metal oxides, Fe-rich minerals, phosphate compounds, organic compounds and biochar.
SOURCES OF TRACE METAL(LOID)S IN THE SOIL SYSTEM

In terrestrial ecosystems, the soil is the main repository of chemical contaminants. Metal(loid)s can reach the soil environment through both geogenic or pedogenic and anthropogenic processes. Most metal(loid)s occur naturally in the minerals present in the soil parent materials, mainly in the forms that are not readily available for plant uptake.

Geogenic or Pedogenic Sources

Most of the trace metal(loid)s occur in nature, the major source of which is weathering of soil parent materials. In fact, the majority of arsenic is derived from geogenic origin. As an example, weathering of basalt in the past thousands of years under the conditions prevailing in Malaysia had resulted in the formation of highly weathered soil known as the Kuantan Series soil (Tessens and Shamshuddin, 1983), which occupy 1 to 2 m above the bauxite layer. Metal(loid)s such as As, Cd and Pb, especially Cr and Ni which is present in excess, are continuously being taken up by plants growing on this soil. The saprolite (a layer of rock materials mixed with soil or termed as C horizon of the soil) that contains bauxite would certainly have higher trace metal(loid)s content than the soil materials above it. In a study on heavy metals content in soils of Peninsular Malaysia grown with cocoa, it was found that Cu and Ni (Cu:36-51 mg/kg; Ni: 20-37 mg/kg) were relatively higher in soils derived from andesitic parent material compared to mean Cu concentration (16 mg/kg) and mean Ni concentration (14 mg/kg) in agricultural soils of Peninsular Malaysia (Fauziah et al., 2001). In their study, Mahsa et al. (2014) reported very high concentrations of three trace metal(loid)s, which are Cr, Ni and Co in serpentinite soils of Malaysia, with concentrations range of 2,427 – 27,863 mg/kg, 850- 4,753 mg/kg and 35-167 mg/kg, respectively.
Solid Waste Management

Anthropogenic Sources

Anthropogenic trace metal(loid)s contamination of various environments is a persistent problem in industrial societies. Unlike pedogenic inputs, metal(loid)s added through anthropogenic inputs are typically more reactive and high in bioavailability (Adriano, 2001). These contaminants are non-degradable and they accumulate in the upper layers of soils. Therefore, soils constitute reservoirs of bioavailable metal(loid)s that can lead to bioaccumulation of toxic elements in the food chain, and induce perturbation of the ecosystem and adverse health effects. Examples of anthropogenic activities which are related to agriculture and responsible for trace metal(loid)s enrichment of agricultural soils are application of P fertilizers, the heavy usage of poultry manure, especially in organic farming, and pesticides, especially copper-based fungicides.

Metal(loid)s Concentrations in Phosphate Rock Fertilizers

Malaysia does not have her own source of phosphate rock fertilizers and thus these fertilizers have to be imported. Malaysia import most of the PR fertilizers from the Middle East and these are mainly of the sedimentary type. The trace metal(loid) of concern in phosphate rock fertilizers is Cd. All phosphate rocks contain some level of Cd, with the concentration being dependent on the origin of the phosphate ore. The sedimentary phosphate rocks, sources of 80% of the P fertilizers on the global market, contain higher levels of Cd than are found in igneous (volcanic) phosphate rocks. Cadmium contamination of agricultural soils is of particular concern because it reaches the food chain through the regular use of the Cd-containing P fertilizers. The Table on the next page shows the Cd levels of some of the PRs available commercially.
Table 1 Metal(loid)s concentrations of some commercial phosphate rock

<table>
<thead>
<tr>
<th></th>
<th>Fe</th>
<th>Cd</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mg/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China Phosphate Rock</td>
<td>2781.52 [1.30]</td>
<td>9.43 [0.50]</td>
<td>16.33 [1.26]</td>
<td>187.68 [0.19]</td>
<td>631.84 [0.62]</td>
<td>135.61 [8.32]</td>
</tr>
<tr>
<td>Jordan Phosphate Rock</td>
<td>1204.56 [1.31]</td>
<td>8.20 [0.58]</td>
<td>17.87 [0]</td>
<td>170.81 [0.47]</td>
<td>21.92 [0]</td>
<td>31.61 [13.58]</td>
</tr>
<tr>
<td>Christmas Island Phosphate Rock</td>
<td>2960.87 [4.99]</td>
<td>21.79 [0.50]</td>
<td>54.47 [1.94]</td>
<td>299.79 [0.47]</td>
<td>448.03 [23.58]</td>
<td>52.41 [8.32]</td>
</tr>
</tbody>
</table>

(Das, 1994)
Solid Waste Management

Trace Metal(loid)s Concentrations of Poultry Manure

The Malaysian vegetable growing farmers rely heavily on poultry manure for the vegetables production. The poultry manure can be a source of trace metal(loid)s as shown in Table 2. Even the organic farming practices are not spared from these heavy metals issue. Copper is one element of concern because some poultry farmers use copper as growth promoter in poultry units (Bolan et al., 2003).

Table 2 Selected trace metal(loid)s concentrations of layer and broiler manure

<table>
<thead>
<tr>
<th>Manure</th>
<th>Zn</th>
<th>Cu</th>
<th>Cd</th>
<th>Pb</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPM Selangor</td>
<td>2448</td>
<td>254</td>
<td>0.60</td>
<td>5.46</td>
<td>-</td>
</tr>
<tr>
<td>Selangor</td>
<td>467.2</td>
<td>12</td>
<td>0.18</td>
<td>2.99</td>
<td>-</td>
</tr>
<tr>
<td>Broiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPM Seremban</td>
<td>623.2</td>
<td>654</td>
<td>0.15</td>
<td>5.55</td>
<td>-</td>
</tr>
<tr>
<td>Selangor Semenyih</td>
<td>469.6</td>
<td>402</td>
<td>0.09</td>
<td>1.79</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>814</td>
<td>748</td>
<td>0.20</td>
<td>8.92</td>
<td>8.49</td>
</tr>
<tr>
<td></td>
<td>955.6</td>
<td>586</td>
<td>0.16</td>
<td>5.89</td>
<td>6.23</td>
</tr>
</tbody>
</table>

(Unpublished data)

Trace Metal(loid)s Distribution of Agricultural Soils of Peninsular Malaysia

From our earlier work undertaken to study the heavy metals distribution in agricultural soils of Malaysia (Zarcinas et al., 2004), based on principal component analysis (PCA) shown on the next page (Figure 1), concentrations of Co, Ni, Pb and Zn in the soils were strongly correlated with soils concentrations of Al and Fe, which suggest evidence of background variations due to changes in soil mineralogy. Chromium was correlated with pH and EC,
Na, S and Ca suggesting association with acid sulphate soil and soil salinity components, while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. Arsenic, Cd, Cu were strongly associated with aqua-regia soluble and available P, and organic matter, suggesting these metals are associated with agricultural inputs in agricultural fertilisers and soil organic amendments. This finding indicates metal(loid)s contamination to the majority of agricultural soils in Peninsular Malaysia is due to anthropogenic activities (possibly added in fertilizers, wastes, pesticides, effluents or atmospheric sources) that may pose risks to the environment or human health.

Figure 1 PCA of the trace metal(loid)s and fertility parameters for the Malaysian soils sampled in this survey
ESTABLISHMENT OF INVESTIGATION LEVELS OF SELECTED TRACE METAL(LOID)S IN MALAYSIAN SOILS

In a soil geochemical and concomitant plant survey to assess the extent of trace metal(loid)s contamination of soils and crops in Malaysia, the 95th percentile investigation levels of selected metal(loid)s (Table 3) were established (Zarcinas et al., 2004). This “95% protection level” was generated to establish a soil quality criterion to ensure protection of the terrestrial environment from the adverse effects of soil pollution. This metal(loid)s investigation levels will be used as a benchmark to decide when remediation should be conducted on the so-called trace metal(loid)s rich or contaminated soil or the by-products is suitable for land application where there are no guidelines on maximum permitted concentrations of trace metal(loid)s are available.

Table 3 The 95% ‘Investigation Levels’ determined for soils of Malaysia ($n = 241$ soils)

<table>
<thead>
<tr>
<th>Element</th>
<th>Investigation level (mg kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>60</td>
</tr>
<tr>
<td>Cd</td>
<td>0.30</td>
</tr>
<tr>
<td>Co</td>
<td>10</td>
</tr>
<tr>
<td>Cr</td>
<td>60</td>
</tr>
<tr>
<td>Cu</td>
<td>50</td>
</tr>
<tr>
<td>Hg</td>
<td>0.35</td>
</tr>
<tr>
<td>Ni</td>
<td>45</td>
</tr>
<tr>
<td>Pb</td>
<td>65</td>
</tr>
<tr>
<td>Zn</td>
<td>95</td>
</tr>
</tbody>
</table>
ASSESSMENT OF THE SUITABILITY OF BY-PRODUCTS TO BE LAND-APPLIED

Agriculture will never be sustainable as long as soil organic matter levels are on a multi-year downward trend. Thus, soil organic matter must be restored to near original levels. Utilization of biosolids can help build-up organic matter in the soil system. Many mineral industrial by-products, such as red gypsum, contain calcium and iron. Use of calcium helps build up the supply of soil organic matter in ways other than those for which calcium sources are usually added to soil. Calcium supplied as gypsum will be a major means for increasing the efficiency of accumulation of soil organic matter. The role of calcium in stabilizing soil organic matter needs more study. The mechanism that binds organic matter to clay particles in soil is polyvalent cations (Muneer and Oades, 1989). Efforts to increase levels of soil organic matter have overlooked this important phenomenon. Calcium is the most important cation for this purpose. Just how much calcium is necessary to bind organic matter to clay and how calcium relates to “slow” and passive soil organic matter need to be subjects for study. Iron on the other hand, is also a good bridging agent. Use of calcium and iron with organic matter could be the great secret for soil improvement.

The by-products that have been assessed this far are industrial biosolids such as sewage sludge, paper mill sludge and coal fly ash, and the mineral by-products such as red gypsum. Table 4 summarise the benefits and metal(loid)s of concern when these by-products are land applied.
Table 4 Benefits and limitations of by-products to be land-applied.

<table>
<thead>
<tr>
<th>By-product</th>
<th>Benefit</th>
<th>Metal(loid)s of concern</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic sewage sludge</td>
<td>Increase soil organic carbon</td>
<td>Cu and Zn</td>
<td>Rosazlin et al., 2005</td>
</tr>
<tr>
<td></td>
<td>Source of N</td>
<td></td>
<td>Rosazlin et al., 2006</td>
</tr>
<tr>
<td>Paper mill sludge</td>
<td>Increase soil organic carbon</td>
<td>No metal(loid)s of concern</td>
<td>Rosazlin et al., 2015a</td>
</tr>
<tr>
<td></td>
<td>Source of N</td>
<td></td>
<td>Rosazlin et al., 2015b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rosazlin et al., 2015c</td>
</tr>
<tr>
<td>Coal fly ash</td>
<td>Source of Ca and Mg</td>
<td>B</td>
<td>Fauziah et al., 1999</td>
</tr>
<tr>
<td></td>
<td>Pozzolanic material for slope stabilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red gypsum</td>
<td>Source of Ca and S</td>
<td>Fe and Ti</td>
<td>Fauziah et al., 1996</td>
</tr>
<tr>
<td></td>
<td>Reduce soil loss from erosion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sewage Sludge

The projected sludge generation for 2035 is estimated at 10 million m³ per year (wet wt. basis) with an average 2% solids content (Anonymous, 2010). Recycling of sewage sludge to agricultural land can be beneficial from the aspect of essential plant nutrients and organic matter supplement to the soil and plant system. However, sewage sludge also contains varying amounts of trace metal(loid)s which may pose a metal toxicity hazard to crops and consumers of these crops.

The sewage sludge research is of international and local interests. The research took off in 1996 until 2001 from the funding secured from the International Atomic Energy Agency (IAEA), Vienna, under FAO/IAEA Co-Ordinated Research Programme with the project title “The Use of Irradiated Sewage Sludge to Increase Soil Fertility, Crop Yields and to Preserve the Environment”. In this research, the 15N-isotope technique was used to determine percentage of N-derived from sewage sludge which was taken up by the corn plant (Fauziah et al., 2000; Rosenani et al., 2000). The availability of sludge N increased with the sludge application rate of up to 300% recommended N rate and then decreased with the higher rates (450 and 600% N recommended N rate) in both non-irradiated and irradiated sludge treatments. This is attributed to the inhibition effect of the sludge on crop growth at the higher rate, and thus lower total N uptake. The total sludge N uptake was 37 to 76% of the total N uptake.

Another research project “Utilization of sewage sludge as fertilizer” funded by Indah Water Konsortiom (IWK) was conducted from 1999 until 2001. In the IWK funded research, a soil incubation study was conducted to investigate the potential use of sewage sludge produced by Indah Water Konsortium (IWK) as nitrogen
fertilizers for corn cultivation. In this study, the composition of sewage sludges and N-mineralization potential of a selected sludge in selected soil types were determined (Rosenani et al., 2008). The sludge collected from ten wastewater treatment plants in Malaysia were acidic in nature and the N, P, K, Ca and Mg contents were variable. In general, domestic sewage sludge have lower concentrations of heavy metals compared to the mixed light industry with domestic sludge type. The concentration of trace metal(loid)s in domestic sewage sludge did not exceed the maximum permitted concentrations (MPC) of the European Community Standard (ECS) for land application. Higher N-mineralization rates with or without sludge addition were found in the Bungor and Jawa Series soil. The Serdang series with lower pH and indigenous organic C had much lower mineralization potentials, even when large amounts of sludge were added. The study highlights the importance of understanding the properties and behaviour of the soil in formulating any sewage sludge-based fertilizer programme for the supply of N for plant growth.

A field trial was also conducted to investigate the potential of sewage sludge as a source of N fertilizer for corn production (Rosazlin et al., 2005) and the uptake of trace metal(loid)s by corn and the accumulation of these metal(loid)s in the soil (Rosazlin et al., 2006). The findings were application of sewage sludge or inorganic N fertilizer (NH_4SO_4) produced significantly higher yields than the control. The rate of 420 kg N ha$^{-1}$ sewage sludge gave the highest dry matter yield for the 1st corn cycle and 746 kg N ha$^{-1}$ for the 3rd corn cycle. It was concluded that the sewage sludge behaves like a slow release fertilizer with only 30% N-mineralized during the duration of corn growth of 70 days duration. Thus, higher rates of sewage sludge is required for fertilization (3 times
N equivalent of the recommended rate of inorganic fertilizer. However, in the 2nd cycle, mineralisation of sewage sludge was slow because of the dry period during this cycle. For sludge to perform efficiently as fertiliser, good moisture conditions are necessary for N mineralisation to take place. The concentrations of trace metal(loid)s in the soil was below the MPC of the ECS and ranged from 12 -35 mg kg\(^{-1}\) of Zn, 5-10 mg kg\(^{-1}\) of Cu, 0.6-2.6 mg kg\(^{-1}\) of Cd, 7-24 mg kg\(^{-1}\) of Pb and 7-11 mg kg\(^{-1}\) of Ni. The concentration of trace metal(loid)s in the maize grain ranged from 5-19 mg kg\(^{-1}\) of Zn, 0.6 – 2.6 mg kg\(^{-1}\) of Cu, 0.04 -0.05 mg kg\(^{-1}\) of Cd, 0.03-0.05 mg kg\(^{-1}\) of Pb and 0.7-1.2 mg kg\(^{-1}\) of Ni which were below the MPC values of the Malaysian Food Act 1983 and Food Regulations 1985.

Unfortunately, sewage sludge application is prohibited in myGAP and myOrganic certification. However, sewage sludge is allowed to be used as potting mix for ornamental plants and for urban landscaping a study on the utilization of sewage sludge as peat substitute for potting media with *Chrysanthemum* as test plant was conducted under the project funded by IWK (Plate 1), treatment 2 and 3 display good flowering capability compared to chemical fertilizer (Treatment 1).
Solid Waste Management

Plate 1 Plant growth response from sewage sludge potting mix

In another study, Kala et al. 2009 stated that oil palm trunk with sewage sludge at 4:1 ratio was the optimum compost as potting media for ornamental plants because of its suitable texture, not stiff, had high nutrients content (2.05% N, 0.64% P, 1.39% K, 0.71% Ca, 0.23% Mg), pH of 6.2 and low C/N ratio of 19. From the research conducted, the Sewerage Services Department has drawn up the proposed Interim Guideline for Biosolids as fertilizer for non-food crops (Table 5).
Table 5 Guideline for trace metal(loid)s maximum permitted concentration (mg kg\(^{-1}\)) for land application of sewage sludge

<table>
<thead>
<tr>
<th>Trace Metal(loid)</th>
<th>(^a)Soil</th>
<th>(^b)Malaysia</th>
<th>(^c)EU</th>
<th>(^d)USEPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>0.01-7</td>
<td>5</td>
<td>20-40</td>
<td>39</td>
</tr>
<tr>
<td>Chromium</td>
<td>5-3000</td>
<td>530</td>
<td>NA</td>
<td>1200</td>
</tr>
<tr>
<td>Copper</td>
<td>2-100</td>
<td>800</td>
<td>1000-1750</td>
<td>1500</td>
</tr>
<tr>
<td>Lead</td>
<td>2-100</td>
<td>900</td>
<td>750-1200</td>
<td>300</td>
</tr>
<tr>
<td>Nickel</td>
<td>NA</td>
<td>200</td>
<td>300-400</td>
<td>420</td>
</tr>
<tr>
<td>Zinc</td>
<td>10-300</td>
<td>2000</td>
<td>2500-4000</td>
<td>2800</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.02</td>
<td>8</td>
<td>16-25</td>
<td>17</td>
</tr>
<tr>
<td>Arsenic</td>
<td><0.02</td>
<td>35</td>
<td>NA</td>
<td>41</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><0.02</td>
<td>18</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA: Not Available
\(^a\) Typical value for Malaysia Serdang series.
\(^b\) Propose Sewerage Service Department Interim Guideline for Biosolids as Fertilizer for Non-Food Crops.
\(^d\) USEPA Pollutant Concentration Limits for Exceptional Biosolids Applied on Land (Unrestricted sludge application).

Paper Mill Sludge

Paper mill sludge is currently disposed off in the landfill and is costly. The commercial usage of waste paper mill sludge as fertilizer and soil amendment is still at the infancy stage. As the paper mill industries in this country continue to expand, the production of paper mill sludge has also increased. Utilization of organic by-products as soil amendments in agricultural production exemplifies a strategy for converting wastes to resources.

Raw paper mill sludge (RPMS) is massive in nature and less suitable for land application. Thus a bulking agent to increase aeration is required. Since oil palm empty fruit bunch (EFB) can
Solid Waste Management

be easily obtained, it was a good choice to be used as a bulking agent. Raw paper mill sludge were mixed with EFB in 3 ratios, that is 1:1, 1:2 and 1:3 based on volume:volume (Plate 2) (Rosazlin et al., 2011). These compost mixtures had no toxicity effects on plants (Plate 3), had 100% seed germination, high in plant nutrients content, low in C/N ratio and had fine particle size of <18 mm. The concentrations of trace metal(loid)s were also within the recommended level of the Council of European Communities (CEC) for compost. However, it is recommended that compost produced from a ratio of 1:1 is the most suitable for land application.

Plate 2 The colour of RPMS and compost mixtures after 90 days of composting
Plate 3 The effect of raw RPM, RPMS and EFB compost mixtures compared to commercial compost on the dry matter weight of a) sweet corn, b) tomato and c) chillies after 14 days planting. The treatment are a) control (mineral soil), b) raw RPMS, c) CF, commercial compost and d) 1:1; 1:2; 1:3 (RPMS:EFB) compost ratio.

A glasshouse study was conducted to evaluate the effect of paper mill sludge on the growth of a forest tree, *Khaya senegalensis* and a medicinal shrub, *Othosiphon stamineus* (misai kucing) (Rosazlin et al., 2015c). Both crops received nutrients input at the early growth after transplanting and growth data was measured at fixed intervals up to a year. *O. stamineus* was measured for above
ground dry matter yield at four crop cycles. Residual nutrients levels in soil after one year of application was also evaluated. Comparison was made with inorganic fertilizer application and untreated soil. *K. senegalensis* responded positively to raw and composted paper mill sludge applications and outperformed the widely used inorganic fertilizer. Paper mill sludge application resulted in higher height increment, diameter growth and total plant biomass than the control and inorganic fertilizer. The medicinal shrub, *O. stamineus*, also produced higher biomass with paper mill sludge application and the trend remains the same for all crop cycles except the relatively lower yield at the 2nd, 3rd and 4th crop cycles. Soil fertility parameters were most affected at the top soil layer with overall accreting tendency under *K. senegalensis* tree with sludge application. Exchangeable potassium was the most limiting nutrient for *K. senegalensis* while P and K were limited for growth of *O. stamineus*.

A field study conducted by Rosazlin et al., (2015b), show that the paper mill sludge has the potential to be a supplementary N fertilizer as well as a soil amendment. The application of recycled paper mill sludge (RPMS) with N significantly contributed to the improvement in plant dry matter (28.5 gram plant⁻¹) and improve soil physical and chemical properties. Total concentration of heavy metal in soil were below the critical values. Hence, the waste paper mill sludge can be successfully used as soil amendment in acidic soil without any serious threat.

Coal Fly Ash

Coal fly ash (CFA) is an amorphous aluminosilicate material, a by-product of coal combustion and is composed of particulate matter collected from flue gas stream. Coal is one of the alternative natural resources used for the production of electricity in Malaysia. The increase use of coal for electric power generation will generate
large quantities of CFA. Kapar power station in Selangor, Malaysia, produced around 200 Mg CFA per day. Currently, only 20% of the CFA is utilized as a component in the cement mixture, the rest is left stacked within the vicinity of the power plant.

Coal is known to contain every naturally occurring elements, and therefore, it is not surprising that CFA can have beneficial effect on solving certain problem of soil quality. Use of CFA as a soil amendment is hindered by the lack of macronutrients (virtually no N and has little plant-available P) in the ash, and also concern on its high concentration of microelements, especially boron (Kukier et al., 2003; Fauziah, et al., 2002). However, boron is a plant nutrient and therefore, CFA can be a source of B fertilizer. The CFA is an alkaline residue produced during the burning of coal for the generation of electricity which is enriched with CaO and MgO and has a pH around 8 to 12. Thus, coal fly ash can supply Ca and Mg to the plants. The pH of CFA can vary depending on the S contents of the coal source, with high S generally producing acidic material and low S producing alkaline material (Fauziah, 1993). The pH of CFA used in this study was 8.34. Nevertheless, CFA is a pozzolanic material or has the capability to act as a cementing material.

A glasshouse experiment was conducted on two soils of different texture that is Tebuk sandy clay and sandy mine tailings (Fauziah et al. 1999). The soils were treated with different rates of CFA (0,10, 20, 40, 80 and 160 Mg ha-1) and the uptake of micronutrients (B, Cu, Fe, Mn and Zn by spinach grown on these soils were determined after 6 weeks of growth. Boron uptake increased while Cu, Fe, Mn and Zn decreased with increasing rates of CFA. The highest spinach dry weight was obtained with the application of 20 Mg ha-1 for Tebuk sandy clay and 40 Mg ha-1 for sandy mine tailings. Thus, CFA cannot be considered as supplementary fertilizer, with the exception of B, and the rates of land-application is limited by B
availability and should be determined prior to its use. However, it has a potential to be a soil amendment because of the slight liming capacity.

Red Gypsum

Red gypsum (RG) is a waste material from the extraction of Ti for industrial purposes. Titanium is extracted from the mineral ilmenite (FeTiO$_3$) by sulfuric acid digestion. Red gypsum is produced by further increasing the pH of the effluent to about 5.0 by using calcitic limestone (CaCO$_3$), at which point the remaining sulfate precipitates along with iron oxides. The latter, derived from the iron contents of the ilmenite, are responsible for the red color of the material. Production process of red gypsum can be concluded by using these two equations as shown below.

First stage of reaction:

\[
H_2SO_4 + CaCO_3 \rightarrow CaSO_4 + H_2O + CO_2
\]

Second stage of reaction:

\[
M_{2}SO_4 + Ca (OH)_2 \rightarrow M (OH)_2 + CaSO_4
\]

Normally, this waste product is disposed off outside the titanium dioxide plant. Such by-product might be suitable for use in agriculture in situations where mined gypsum has been used in the past. Red gypsum can be of great economic value due to its very high Ca and S content. In addition, the presence of the iron oxide responsible for the red color of RG might make it more effective as a soil amendment (Fauziah et al., 1996) rather than as a source of Ca and S fertilizer. Dissolution of the gypsum and subsequent supply of sulphate S to crops might be affected by the presence of the oxides, which have the possibility to adsorb sulphate.
Che Fauziah Ishak

Calcium ions, (Ca$^{2+}$), is the major exchangeable cation for which gypsum is being evaluated with a view of improving soil physical properties. Particle size (2 mm vs. 212 um) shows an obvious effect on solubility, with increasing rate of solubility with smaller particle size (Figure 2). For fine-grained red gypsum, differences in solubility kinetics were less pronounced between analytical grade and red gypsum. The importance of including fine-sized particles in surface applied gypsum is that immediate dissolution displayed by these fine particles will maintain a high concentration of electrolytes in the percolating and runoff solutions. The dissolution kinetics of Fe was also monitored, but the concentration is similar to background concentrations of about 1.6 uM or 18 mg/L. This indicates that Fe mainly exist in the non-soluble form.

![Figure 2 Dissolution kinetic of analytical grade and red gypsum](image)

Figure 2 Dissolution kinetic of analytical grade and red gypsum
Red gypsum amendment can be used to temporarily control soil loss from conventional cultivated plots during the growth of the annual crop. In general, gypsum is effective over limited time spans, perhaps the few months needed to establish a crop, but its cost and short life span are major problems for widespread use. With the probable increase in supply of red gypsum produced at the titanium dioxide industry, the economics of gypsum use may improve. Only soils with a high percentage of water dispersible clay gave a positive effect of gypsum or red gypsum on dispersion. (Figure 3)

![Figure 3](Image)

Figure 3 Soil loss versus average rainfall intensity

A glasshouse study was also conducted whereby gypsum was used as a source of Ca for crops requiring additional amount Ca fertilization above the amount supplied by calcitic limestone during the liming process (Chin, 1996). One crop which has high Ca
requirement is the groundnut plant and this Ca is important for the pod-filling of the developed nuts. The result of this study indicated that 2.5 t/ha of red gypsum was required for the Bungor Series Soil and sandy tin tailings to reduce the percentage of empty pods from 15 to 5% for Bungor Series Soil and 5 to 2% for the sandy tailings.

UTILIZATION OF BY-PRODUCTS FOR IN-SITU IMMobilIZATION TECHNIQUE

Metal(loid)s are not biodegradable and persist for a long time in contaminated soils. It is very expensive and time consuming to remove metal(loid)s from metal(loid)s-rich or contaminated soils. Immobilization of heavy metal(loid)s *in-situ* by adding soil amendment is employed to reduce the bioavailability of metal(loid) and minimize plant uptake. On top of that, some of these amendments can improve soil physical properties such as soil structure and also contain essential plant nutrients and thus improve crop growth.

In-situ immobilization is a cost-effective approach where land-applied amendments are used to stabilize contaminants via adsorption and/or precipitation reactions that render the contaminant immobile (Adriano, 2001). Numerous inorganic amendments such as clays, Al/Fe/Mn oxides and hydroxides may be land applied to metal contaminated soils as means of reducing metal mobility. Nowadays, there is pressure on waste management managers to find ways to convert wastes into resources instead of sending them to the landfill.

Principle Involved in Trace Metal(loid)s Immobilization in the Soil System

The basic principle involved in the immobilization technique, the metal(loid) of concern is removed from soil solution either
through adsorption, complexation, and precipitation reactions, thereby rendering the metal(loid) unavailable for human and plant uptake and leaching to groundwater. Heavy metal incorporation in the soil is controlled by adsorption processes, such as surface complexation and ionic exchange, but other mechanisms such as precipitation are likely to contribute to metal retention in the soil (Sastre et al., 2006). Adsorption is defined as the accumulation of ions at the interface between a solid phase and an aqueous phase. Adsorption isotherms have been widely used in studies on adsorption phenomena, supplying numerical parameters that provide information on the retention capacity and intensity of the metal by the soil. The advantage of these equations is that they can be applied to adsorption of any ions and gives straightforward parameters which can be related to soil properties.

Another meaningful study to complement the adsorption isotherm study is the widely-used sequential extraction or fractionation study. This technique is used for understanding element distribution in the solid phase. These methods are based on the rational use of a series of more or less selective reagents chosen to solubilise successively the different mineralogical fractions thought to be responsible for retaining the larger part of the metal(loid)s. They are intended to simulate the various possible natural and anthropogenic modifications of environmental conditions.

Sorption

One of the important criteria for effective adsorption of metal(loid)s to by-products (sorbent) is the particle size of the by-products. The finer the size of the by-products, the higher will be the surface area, hence the higher is the adsorption of the metal(loid)s. However,
there is a limit to the fineness of the particle size and should be greater than 100 μm. Retention of charged metal(loid) solute species by charged surfaces of soil components is broadly grouped into specific and non-specific retention. Non-specific adsorption is a process in which the charge on the ions balances the charge on soil particles through electrostatic attraction whereas specific adsorption involves chemical bond formation between the ions in the solution and those in the soil surface. In other words, specific adsorption involves the exchange of metal(loid)s cations with surface ligands of the soil colloids to form covalent bond. The metal(loid)s most able to form hydroxyl complexes are specifically adsorbed to the greatest extent. Thus, in specific adsorption, the metal(loid)s are held tighter or closer than the non-specific adsorption and are more difficult to come out into the solution. Generally, the trace metal(loid)s are specifically adsorbed to the soil colloidal surfaces.

Precipitation

Precipitation appears to be the predominant process in high pH soils in the presence of anions such as \(\text{SO}_4^{2-}, \text{CO}_3^{2-}, \text{OH}^- \text{and HPO}_4^{2-} \), and when the concentrations of the metal(loid) ion is high. Precipitation of metal(loid) phosphates/carbonates is considered to be one of the mechanisms for the immobilization of metal(loid)s such as Cu and Pb, especially in substrates containing high concentration of metal(loid)s. Similarly, liming typically enhance the retention of metal(loid)s. In general, metal(loid)s tend to be soluble at low soil pHs and precipitate out at higher pHs.

Co-precipitation of metal(loid)s is another mechanism of metal(loid)s immobilization in the soils system. Co-precipitation is the simultaneous precipitation of chemical agent in conjunction with other elements by any mechanism at any rate. Metal(loid)s
are precipitated with clay minerals, hydrous Fe and Mn oxides
and calcite (Table 6). Arsenate (As (V)) sorption onto ferrihydrite
showed that co-precipitation was a more efficient process than
sorption for metal(loid) removal from aqueous solutions. Liming
the soil can bring out Cd of the soil solution as it will co-precipitate
with CaCO₃.

Table 6 Co-precipitation of trace metal(loids) with soil minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Co-ppt trace metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe oxides</td>
<td>V, Mn, Ni, Cu, Zn, Mo</td>
</tr>
<tr>
<td>Mn oxides</td>
<td>Fe, Co, Ni, Zn, Pb</td>
</tr>
<tr>
<td>Ca carbonates</td>
<td>V, Mn, Fe, Co, Cd</td>
</tr>
<tr>
<td>Clay Minerals</td>
<td>V, Ni, Cu, Cr, Zn, Cu Pb, Ti, Mn, Fe</td>
</tr>
</tbody>
</table>

(Alloway, 1995)

Oxidation

Trace metal(loids), including As, Cr and Hg are most commonly
subjected to microbial oxidation/ reduction reactions, thereby
influencing their speciation and mobility. Such metal(loids) can
exist in various forms or species with several valences based on the
soil condition, whether it is well drained (oxidized) or waterlogged
condition (reduced). Example, As can exist as As (V) under oxidized
condition and become immobilized, and As (III) under reducing
condition and become mobile.

Under reducing condition also, sulphate are reduced to sulphide
at pe = -2.0, which can lead to precipitation of metal sulphides of
elements such as Cd, Co, Cu, Ni, Pb and Sn. The sulphides of these
elements are quite insoluble, so their mobility and phytoavailability
are considerably less than would be expected under well-oxidized soils. Exception are Fe and Mn, in that they are more soluble under reducing than in oxidizing conditions.

Methylation

Methylation is a biological mechanism for the removal of toxic trace metal(loid)s by converting them to methyl derivates that are subsequently removed by volatilization. Typical examples of such metal(loid)s are As and Hg. Although methylation of metal(loid)s occurs through both chemical (abiotic) and biological processes, biological methylation (biomethylation) is considered to be the dominant process in soils and aquatic environments.

Agricultural and Industrial By-products Selected for In-situ Immobilization of Trace Metal(loid)s

Studies have been conducted on selected amendments for the immobilization of trace metal(loid)s (Table 7). These amendments can be categorized as liming materials, organic materials or biosolids, phosphate compounds and metal oxides (Fe-rich materials).
Table 7: Selected soil amendments in the immobilization of metal(loid)s in soils

<table>
<thead>
<tr>
<th>Amendments</th>
<th>Metal(loid)s</th>
<th>Observations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground magnesium limestone</td>
<td>Mn</td>
<td>Manganese concentration in the soil solutions decreased exponentially with increasing pH after application of ground magnesium limestone.</td>
<td>Shamshuddin et al., 2009</td>
</tr>
<tr>
<td>Red gypsum (RG)</td>
<td>Cd, Cu, Ni, Pb and Zn</td>
<td>RG and WTR can be recommended as soil amendments because of their effectiveness in reducing metal(loid)s in the soil through changes in soil pH. However for WTR, P deficiency in plant has to be monitored because of WTR ability to fix P.</td>
<td>Fauziah et al., 2011; Nur Hanani et al., 2008</td>
</tr>
</tbody>
</table>
Organic materials/ Biosolids

| Biochar – Oil palm empty fruit bunch (EFB) and rice husks (RH) | Cd and As | Oil palm EFB and RH biochars indicate that the commercially produced biochars have good potential to be used as sorbents for As and Cd. | Sari et al., 2014 |
| Coal Fly ash | Cd, Cu, Ni, Pb and Zn | CFA can significantly reduce the Zn derived from sewage sludge from being taken up by the maize plants at a ratio of (10%:5%) and up to ratio 4:1 (20%:5%) coal fly ash to sewage sludge. However, CFA was not a good liming agent since the calcium carbonate equivalent (CCE) was low. | Nur Hanani et al., 2010 |
Applications of P-amendments show effectiveness of TSP in reducing lead in soils. The best treatments are as follows; TSP > ERP BM. These treatments were recorded able to stabilize the Pb as indicated in the percentage reduction in phytoavailable form pools into a more stable form of complex.
Malaysian soils dominantly fall (about 75%) into the Ultisol and Oxisol Orders in Soil Taxonomy. These soils are generally acidic, pH of 4.0-5.0 and contain essentially of variable charge minerals, namely sesquioxides and kaolinite, thus, have low cation exchange capacity or cations retention capacity. In Malaysia, liming is the most common management practice used to overcome the problems associated with soil acidification. Most plants grow well at a pH range of 5.5–6.5 and liming is aimed to maintain the pH at this range. The main purpose of liming is to reduce aluminium toxicity in highly weathered acidic tropical soil, but at the same time, this practice can help reduce heavy metals availability to plants via precipitation process. Liming experiments on typical Ultisols and Oxisols have indicated the need for liming for annual crop production. In a study on an Oxisol grown with cocoa, the application of lime at 2 t ha\(^{-1}\) reduced soil solution Mn concentration in the 0-15 cm layer from 27 to 12 µM after 3 months (Shamshuddin et al., 1991). Manganese concentration in the soil solutions decreased exponentially with increasing pH after application of ground magnesium limestone (Figure 4). Applying lime in combination with gypsum would bring more Ca and/or Mg further down the soil profile, thus alleviating to some extent subsoil acidity. Applications of ground magnesium limestone (GML), usually known as dolomitic limestone, would also supply the necessary Ca and Mg needed for corn and groundnut growth. The presence of more Ca in the soils arising from lime and/or gypsum applications is also beneficial because Ca can to a certain extent alleviate Al toxicity. The increase in solution pH would certainly affect the availability of other metalloid(s) in the soil.

The increase in solution pH resulting from GML application is due to production of hydroxyl ions when GML is dissolved and subsequently hydrolysed:
Ca,Mg (CO$_3$)$_2$ + H$_2$O → Ca$^{2+}$ + Mg$^{2+}$ + 2CO$_3^{2-}$
CO$_3^{2-}$ + H$_2$O → HCO$_3^{-}$ + OH$^-$

The hydroxyl ions then reacts with Al in the solution to precipitate as aluminum hydroxide, which over time may crystallize into gibbsite [Al (OH)$_3$]:
Al$^{3+}$ + 3OH$^-$ → Al (OH)$_3$

Figure 4 Relationship between soil solution Mn and pH (Shamshuddin et al., 1991)

Biochar

Biochar is a carbonaceous material which can adsorb metalloid(s) in soils and water. The main factors influencing the sorption behaviour of biochars are pyrolysis condition and the feedstock type in the production of biochars. One type of biochar may not be appropriate for all cases of remediation. The application of biochar to soil may improve the sorption capacity of metalloid(s) in soil. This carbonaceous product was reported to have many functional groups with high surface areas, which are likely related to its potential to act as an adsorbent.
In terms of remediation of heavy metal contaminated soils through their retention in the soil system, biochar has been considered to be potentially effective. A study by Beesley and Marmiroli, (2011) have demonstrated that biochar has a high capacity to adsorb pollutants in contaminated soils. Biochar can stabilize the heavy metals in the contaminated soils, improve the quality of the contaminated soil and has a significant reduction in crop uptake of heavy metals.

Biochar is a fine-grained charcoal-like material produced through pyrolysis, which is heating of biomass to temperature of 300-600 °C under air deprived conditions. Through pyrolysis, the feedstock changes chemically to form structures that are more resistant to microbial degradation than the original material.

Utilization of biochar as a soil amendment has attracted great interest globally due to the apparent benefits to soil fertility and plant growth as well as the potential to store or sequester C in the soil system. It has been reported that activated carbon, which is a subset of biochar, had been used as a substrate to improve the adsorption of heavy metals such as mercury, a process which is termed as chemisorption. The mechanism of heavy metal retention in soil by biochar can be categorized as physical or chemical in nature. The physical aspects deal more with filtering mechanism of the heavy metal due to its structure or size by the pore size of the biochar. It is important to characterize the pore size distribution of biochar, the percentage of macropore, mesopore, nanopore, because the type of pores dictate the extent of liquid-solid adsorption processes.

In Malaysia, a pilot scale biochar manufacturing plant using a modern engineering system has been built by Universiti Putra Malaysia (UPM), in collaboration with a private company (Nasmech Technology Sdn. Bhd.). The plant was built to produce biochar from oil palm empty fruit bunches (EFB) and is capable of producing
20 t of biochar daily. Additionally, biochar derived from rice husks has been produced commercially in Malaysia to avert wastage of large quantities of rice husks (RH). It is reported that 97,980 million tonnes of rice husk was produced annually during the processing in the mills (Bernas Sdn. Bhd.).

The surface morphology of biochar samples was observed under Jeol JSM-6400 scanning electron microscope (Sari et al., 2014). Plate 4 shows that EFB biochar possesses uniform pores and smooth wall surfaces with maximal 20 μm in diameter. Small particle-like ashes were found scattered on the surface area of EFB biochar as observed in Plate 4. In comparison, the pores on rice husk biochar are not well-shaped with diminished structure of pores (Plate 5). Small pores on the rough rice husk biochar surface was observed as shown in Plate 5. Pyrolysis temperature can attribute to the pores formation and destruction on biochar. When low temperature was applied, the biochar cell structure and arrangement was found similar to the cell structure and arrangement of the original biomass (Pavithra, 2011). The stack of biochar cells and pores were arranged accordingly and well-shaped as found in the SEM image of EFB biochar. However, as the temperature increase, the pore size become enlarged and the walls between adjacent pores were destroyed (Zhang et al., 2004), which explained the diminish pores on rice husk biochar. The lack of biochar structure also might be due to the volatilization process during the biochar production.

From the observation on the SEM images (Sari et al., 2014), both biochar generally exhibit macropores with internal diameter size of 10 μm. The macroporosity (>50 nm) of biochars are relevant for soil aeration and water movement (Troeh and Thompson, 2005). Macropores also facilitate the root movement through the soil and act as habitats for the soil microbes (Saito and Muramoto, 2002). Hence, biochar has the potential to improve soil physical properties
such as soil water retention and porosity. Basso et al. (2013) reported the addition of biochar on sandy loam soil increased the water-holding capacity by 23% compared to the non-amended soil. The soil moisture at field capacity also increase with the increase of char surface area and porous structure. The macropores are also important as feeder pores to transport adsorbate molecules to the meso- and micropores.

A mixture of meso- and micropores were also present on EFB and rice husk biochar surface. The micropores of biochar make the greatest contribution to total surface area, hence responsible for the high adsorption capacities of molecules (Rouquerol et al., 1999). Mesopores are also of importance for many liquid-solid adsorption processes, as reported by Lua et al., (2004), on pistachio-nut shells. Thus, based on the EFB and rice husk biochar structural surface, they have the potential to sorb metal and metalloid to reduce the mobility of these trace elements in soil.

![Plate 4](image)

Plate 4 SEM image of EFB biochar at 1000 x magnification (Sari et al., 2014)
The Brunauer, Emmett and Teller (BET) surface area of biochar indicates the physical changes of biomass during the pyrolysis process. The surface area depends largely upon the carbon (C) mass removed during the processing, creating pores in the materials (Zabaniotou et al., 2008). The sorption ability of biochar can be determined from its surface area, where high surface area will increase the sorption capacity. Surface area and porosity of EFB and rice husk biochar are presented in Table 8.

Table 8 BET surface area and porosity of biochars

<table>
<thead>
<tr>
<th>Biochar</th>
<th>BET surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
<th>Pore surface area (m²/g)</th>
<th>Average pore diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFB</td>
<td>46.32</td>
<td>0.01</td>
<td>0.61</td>
<td>3.85</td>
</tr>
<tr>
<td>Rice husk</td>
<td>23.22</td>
<td>0.01</td>
<td>1.41</td>
<td>4.34</td>
</tr>
</tbody>
</table>

Biochar produced from EFB had a larger surface area than RH biochar. The higher surfaces area of EFB biochar may indicate the adsorption capacity of heavy metals compared to RH biochar.
In general, biochar surface areas can be influenced by biochar’s micropore volume, choice of feedstock and pyrolysis processing condition (Boateng et al., 2007). The micropore volume of EFB biochar was found to be the same as RH biochar (~0.01 cm3/g). Internal surface area of biochar which represent pore on the inner wall resulted from interior crack was referred to as micropore area. Meanwhile, the average pore diameter for both biochar are in the range of mesopores diameters, with the internal pore width between 2 to 50 nm. This indicates the potential of adsorption capacity EFB biochar and RH biochar in liquid-solid adsorption (Lua et al., 2004).

The adsorption isotherm data were fitted to the Langmuir’s adsorption model. Table 9 shows the values of adsorption isotherm parameters for EFB biochar and RH biochar. The maximum adsorption capacity (q_{max}) of EFB biochar for As was 0.424 mg g$^{-1}$, which is higher than RH biochar (0.352 mg g$^{-1}$). Similar trend was found on adsorption maximum, q_{max}, of Cd with the values of 15.15 and 3.19 mg g$^{-1}$, for EFB biochar and RH biochar, respectively. The parameter b (binding affinity) is related to the affinity of the binding sites, which allows comparisons of the affinity of biochar toward the metal(loid) ions. EFB biochar had a higher affinity for As than did RH biochar. In contrast, the binding affinity (b) of Cd for RH biochar is higher than EFB biochar. There are several factors attributed to sorption mechanism of trace elements with addition of biochar, of which the most important are pH and CEC. The alkaline properties of biochars increased the solution pH, which induced metal immobilization through metal precipitation and decreases metal solubility. Value of R^2 shows correlation or linear relationship, whereas the relationship become more linear when the value is closer to 1. The high correlation coefficient values (R^2) which ranged from 0.98 to 0.99 indicate that the Langmuir isotherm best fitted the experimental data.
Table 9 Sorption isotherm obtained by fitting the data with the Langmuir isotherms for the EFB biochar and RH biochar

<table>
<thead>
<tr>
<th>Biochar</th>
<th>Heavy metal</th>
<th>q_{max} (mg g$^{-1}$)</th>
<th>b (L mg$^{-1}$)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFB</td>
<td>As</td>
<td>0.4240</td>
<td>0.7299</td>
<td>0.9890</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>15.1515</td>
<td>0.1142</td>
<td>0.9921</td>
</tr>
<tr>
<td>RH</td>
<td>As</td>
<td>0.3522</td>
<td>0.0248</td>
<td>0.9823</td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>3.1908</td>
<td>0.6920</td>
<td>0.9984</td>
</tr>
</tbody>
</table>

Samsuri et al. (2013) reported coating the biochars with Fe (III) greatly increased their adsorption capacities for both As (III) and As (V). The results indicate that the commercially produced EFB and RH from Malaysia have good potentials to be used as adsorbents for As (III) from aqueous solutions. Furthermore, coating the EFB and RH with Fe (III) increased their adsorption capacities for both As (III) and As (V) making the biochars more effective as adsorbents for both As (III) and As (V).

Soil solution study of incubated arsenic-rich Histosol amended with biochar was conducted to evaluate the effects of EFB biochar and RH biochar on water-soluble As naturally present in Histosol (Figure 5) (Sari et al., 2014). Empty fruit bunch and RH biochars exhibited important feature as adsorbent with the porous structure and alkaline properties. The sorption experiment has shown the potential of these biochars to immobilize As in the soil system (Sari et al., 2014). Other studies conducted on the ability of biochars to adsorb As have shown negative results. It is however believed that the Fe present (1.0 %) in the Histosol has coated the surfaces of biochar particles applied to the soil, and these coatings have adsorbed or immobilized As in the soil system. Thus, both
the decreased of As concentration and increased of soil pH in soil solution study indicate the ability of biochar to reduce the phytoavailable As in contaminated soil (Figure 6).

Figure 5 Effects of EFB and RH biochars on water-soluble arsenic in pore water

Figure 6 Effects of EFB and RH biochars on extractable arsenic in soil
The pot experiment was conducted to determine the optimum rates of biochars to reduce arsenic (As) uptake by sweet corn (Figure 7). Two types of biochars, EFB and RH with 5 rates (0, 2.5, 5, 10, 20 t C/ha) application were applied to 15 kg naturally contaminated soil in polybag. After 56 days of growth, biochar reduced the concentration of As in foliar tissue by 58% and 61% with the highest application of EFB and RH biochars, respectively, at 20 t/ha C compared to the non-amended soil. This further proved that As can be adsorbed by the Fe coating present on the surface of biochars and hence prevent it from being taken up by the corn plants. Thus, this study further complement the fact that the biochars are effective in reducing the availability of As taken up by sweet corn as its concentrations decreased with increasing rate of biochars.

![Graph showing the uptake of arsenic by sweet corn plant after 56 days of planting](image)

Figure 7 The uptake of arsenic by sweet corn plant after 56 days of planting
<table>
<thead>
<tr>
<th>Amendments</th>
<th>Metal</th>
<th>Effects</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Gypsum</td>
<td>Cu</td>
<td>Decreased sig. at > 10% level</td>
<td>Fauziah et al., 2011</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>Decreased significantly at > 5% level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>Decreased sig. at 20% level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>Decreased sig. at 2.5 to 10% level. At 20% highest Cr level – not sig. different from control</td>
<td></td>
</tr>
<tr>
<td>Coal Fly Ash (CFA)</td>
<td>Cu</td>
<td>Decreased significantly at 5% - 10%, but increased sig. at 20%</td>
<td>Nur Hanani et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>Decreased significantly at greater than 5% treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased significantly compared to control</td>
<td></td>
</tr>
<tr>
<td>Water treatment residue (WTR)</td>
<td>Cu</td>
<td>Decreased significantly compared to control</td>
<td>Nur Hanani et al., 2008</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>Decreased significantly compared to control</td>
<td></td>
</tr>
</tbody>
</table>
Solid Waste Management

Industrial By-products/Minerals

Addition of industrial by-products to soil has gained importance recently as an alternative to remediate trace metal(loid)s contaminated soil (Table 10). For example, by-products from steel (iron oxides) and energy industries (ashes) will be assessed as an environmentally and resource-efficient option due to their alkalinity or acid neutralizing capacity and high specific surface area. The ANC is usually expressed as CaCO$_3$ equivalent and one of the most important factors used to evaluate the value of industrial by-products to be used as a liming agent on acidic soil.

Red Gypsum

The red gypsum studied was alkaline in nature, with a pH of 7.98 due to the presence of residual CaCO$_3$ in RG (Fauziah et al., 1996). This property can be exploited to reduce the solubility and hence, phytoremediation, of some trace metal(loid)s in the soil system. The acid-neutralizing capacity is the most important characteristic in the evaluation of the value of the material as a liming agent. Red gypsum is not a good liming agent, with only 1.79% calcium carbonate equivalence. However, high rates of application (> 2.5%) can have significant influence on the pH of the soil system (Nur Hanani et al., 2009). The surface area for the red gypsum (pulverized and sieved through 2.0 mm sieve size) was 39.8 m2g$^{-1}$. The high surface area plays a central role for adsorption behaviour. Furthermore, the presence of Fe oxide can contribute to the co-existence of positive and negative charges on the variable charge oxide surface (Plate 6).
A column leaching study was conducted to investigate the potential utilization of red gypsum for \textit{in-situ} immobilization of arsenic in the soil system. In this experiment, the treatment used was the different rates of red gypsum. The treatments were applied at the top of the soil only. The treatments were: T1: no red gypsum (control), T2: 25 t/ha red gypsum, T3: 50 t/ha red gypsum, T4: 100 t/ha red gypsum. From this study, red gypsum application has the potential to immobilize arsenic in the soil system and thus prevent arsenic from being taken up by the crop grown on arsenic contaminated soil. The presence of Fe in red gypsum can help surface adsorbed or co-precipitate As in the soil system (Figure 8 and 9).

\textbf{Plate 6} Fibrous crystal aggregates of gypsum with some coatings of iron oxides
Figure 8 Arsenic concentrations in each leachate collection (50 mL) up to one pore volume for each treatment

Figure 9 Arsenic concentrations in each leachate collection (50 mL) for 25 t/ha, 50 t/ha and 100 t/ha red gypsum
In a soil incubation study, RG was applied to sewage sludge treated soil (Fauziah et al, 2011). Sewage sludge tend to have high concentrations of Cu and Zn and its application to soil increase these metals content. There seemed to be a lag-phase in the release of Zn from the RG minerals into the soil solution (Figure 10). The Zn concentrations in the soil solution started to increase only after five weeks of incubation for the treatments with low rates of RG application. The reason for this slow release of Zn into the soil solution is not known. However, this study demonstrated that increasing the RG amendment rates (5%, 10%, 20% and 40%) clearly reduced the Zn concentrations in soil solution after ten weeks of incubation. Thus, RG has the potential to fix Zn in the soil system and make it less phytoavailable.

![Figure 10 Soluble Zn at different rates of RG treatments of contaminated soil](image)

Increasing the rate of red gypsum application resulted in decreasing uptake of Zn, Cu and Fe by the corn plants (Figure 11). This is due to the increase in soil pH. The residual alkalinity plus the buffer capacity of iron oxides (goethite and hematite) (Fauziah
et al., 1996), allow red gypsum to consume protons from an acid soil. However, the results for Cr seemed to be rather varied. The levels of Cr in red gypsum were found to be low. This study did not ascertain whether the organic matter in sludge alleviates the effect of excess Ca and Fe in the mixed soil system. This needs to be investigated. Furthermore, co-mixing two products such as RG and compost can turn the by-products into a more useful soil amendment as the amending capability of the by-product can be complemented and further enhanced by the co-mixed by-products (Fauziah et al., 2011).

Figure 11 Uptake of microelements (mg/pot) using contaminated soil amended with red gypsum
A glasshouse study was then conducted with the same treatments as the soil incubation study using sweet corn as the test crop. Two set of experiments were established with 4 treatments and 4 replicates. Treatments of experiment are: Red Gypsum + EFB Compost with different rate of red gypsum (2.5, 50, 100 and 200 t/ha) (Table 11). For Fe concentrations, application of RG+EFB compost show significant decrease in Fe concentrations in foliar tissues at the rate of 100 and 200 t/ha compared to the lower rates. The toxic level of Fe for corn is >350 mg/kg, thus there is no problem of Fe toxicity to plants in this case. For Zn concentration, significant decrease in Zn concentration were found at the rates of 100 and 200 t/ha compared to the lowest rate of RG. For Cd, significant decreased in Cd concentrations with the increasing rates of RG+EFB compost were found at the rates of 100 t/ha and 200 t/ha compared to the lowest rate of RG+EFB compost used.

Table 11 Effects of treatments on trace metal(loid)s in foliar tissues

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fe</th>
<th>Zn</th>
<th>Cd</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>RG 2.5t/ha + EFB Compost</td>
<td>305 ab</td>
<td>83.75 a</td>
<td>0.16 ab</td>
<td>0.98 ab</td>
</tr>
<tr>
<td>RG 50t/ha + EFB Compost</td>
<td>477 ab</td>
<td>75.65 a</td>
<td>0.08 ab</td>
<td>0.07 b</td>
</tr>
<tr>
<td>RG 100t/ha + EFB Compost</td>
<td>237 bc</td>
<td>39.20 b</td>
<td>0.03 b</td>
<td>0.14 ab</td>
</tr>
<tr>
<td>RG 200t/ha + EFB Compost</td>
<td>94 bc</td>
<td>9.63 b</td>
<td>0.05 b</td>
<td>0.06 b</td>
</tr>
</tbody>
</table>

Means having the same letters within column are not significantly different at p>0.05

Co-application of red gypsum amended soil with biosolids was carried out in field condition with five treatments and four replicates at Lanchang, Pahang. Sweet corn (Zea mays L.) was used as the test crop. Rate of red gypsum used was 100 tonnes/ha combination with EFB compost, EFB biochar and chicken dung in the ratio of
1:4 volume/volume basis. Based on (Table 12), co-applications of RG with biosolids shows a decrease in Cd concentration compared to the control. The Cd concentration is above the 95\(^{th}\) percentile; nevertheless, it is below the maximum allowable limit of the Canadian soil regulation. For Cr and Ni concentrations, application of RG: EFB compost shows a significant decrease in Cr and Ni concentrations compared to the control. For Pb concentrations, application of RG: EFB compost shows significant decrease in Pb concentrations compared to the control and other treatments. Application of RG and biochar shows significantly higher Pb concentration compared to the control and other treatments. Chromium, Ni and Pb are below the 95\(^{th}\) percentile or investigation level and also below the maximum allowable limit of the Canadian soil regulation. In conclusion, application of RG and EFB compost shows the best co-application on soil towards the corn growth based on the significant effect on the uptake of trace metal(loid)s.

Table 12 Co-application of red gypsum amended soil with biosolids (field study)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cd</th>
<th>Cr</th>
<th>Ni</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3.81 a</td>
<td>1.93a</td>
<td>0.22a</td>
<td>3.49a</td>
</tr>
<tr>
<td>RG only</td>
<td>3.79 ab</td>
<td>1.59ab</td>
<td>0.19a</td>
<td>3.79ab</td>
</tr>
<tr>
<td>RG: EFB Compost</td>
<td>2.74 c</td>
<td>0.21c</td>
<td>0.05b</td>
<td>0.62d</td>
</tr>
<tr>
<td>RG: Biochar</td>
<td>3.20b</td>
<td>1.35ab</td>
<td>0.26a</td>
<td>3.92a</td>
</tr>
<tr>
<td>RG: Chicken Dung</td>
<td>3.17b</td>
<td>1.44ab</td>
<td>0.22a</td>
<td>2.73c</td>
</tr>
<tr>
<td>95(^{th}) percentile-</td>
<td>0.30</td>
<td>60</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>Investigation Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Allowable Limit</td>
<td>8</td>
<td>75</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

Means having the same letters within column are not significantly different at p>0.05
Coal Fly Ash

Alkaline agent can be used as a stabilization agent for contaminated soil to reduce pathogen and trace metal(loid)s availability. Large surface area determination of CFA was probably due to large number of spongy irregular carbon-rich particles of unburnt coal (Fauziah, 1993). Surface area determination for this CFA was 7.5 m2/g. Hence, the particle size distribution will provide information relating to land application of the ash, in term of trace elements solubility and effect on soil physical properties (Plate 7).

Plate 7 Cenosphere shape of Coal Fly Ash

The neutralization of acid by CFA is a relatively slow process that mainly involves the particle surfaces (Wong et al., 2002). The CFA was not a good liming agent, with only 0.504% CaCO$_3$ equivalent (CCE). Based on the low level of Ca in this CFA, it is considered only as a Class F fly ash (Bilski et al., 1995). Therefore, considerably large quantities of this CFA compared to lime will be required to raise the pH of soil to some target level.
A soil incubation study was also conducted whereby, CFA was applied on sewage sludge treated soil (Nur Hanani et al., 2010). Increasing the CFA amendment rates clearly reduced the Zn concentrations in soil solution for the ten weeks of incubation (Figure 12). The reduced concentration of Zn probably can be explained by the higher adsorption and precipitation of Zn with an increase in pH. The control treatment (0% CFA) had Zn concentrations in the soil solution ranging from 1.47 mg L\(^{-1}\) to 0.67 mg L\(^{-1}\) for the four weeks of incubation and increased drastically at week five to 5.0 mg L\(^{-1}\). It is not known with certainty why there was a delayed dissolution of Zn from the sewage sludge. The Zn concentration for the control treatment after week five until week ten of the incubation was still high (> 3.73 mg L\(^{-1}\)) compared to other treatments. Treatments using 2.5% and 5% CFA ranged less than 2.15 mg L\(^{-1}\) whereas treatments using greater than 10% CFA had the lowest Zn concentrations which were less than 1 mg L\(^{-1}\). This indicates that CFA was feasible as a stabilization agent to reduce trace metal(loid)s toxicity in the sewage sludge-treated soil.

![Figure 12 Soluble Zn at different rates of CFA treatments of contaminated soil](image)

52
The Zn uptake by maize for treatment using CFA is shown in Figure 13. Overall, the concentration of Zn uptake by maize significantly decreased at higher rates of CFA treatments. Usage of 2.5% CFA did not show any significant result as compared to the control treatment. However, addition of more than 5% CFA significantly reduced Zn concentration in maize. This showed that the CFA was useful as a soil amendment to fix Zn in the contaminated soil.

The results showed application of CFA up to 10% reduced Cu uptake by the maize plants compared to the control (Figure 18). However, there was no significant difference in Cu uptake by maize between the control and the 20% CFA treatment indicating that CFA can be beneficial as a soil amendment to reduce Cu uptake by plant but, the amount of CFA should be applied at a proper rate to avoid Cu toxicity (Nur Hanani et al., 2010).

Note: Similar letters above the bars indicate that they are not significantly different at 99% confidence level, according to the Duncan New Multiple Range Test (DMRT)

Figure 13 Uptake of trace metal(loid)s (mg/pot) using soil amended with CFA
Drinking-water Treatment Residues

In Malaysia, a low-cost and potentially effective substitute for remediation could be drinking-water treatment residues (WTRs). The pH for WTR for this study was close to being neutral. The WTR has a pH of 7.07, the mineral present in WTR, such as kaolinite, gibbsite and Fe-oxides, provide surfaces for the adsorption of heavy metals. Value for WTR surface area was 28.3 m²/g and this value was largely dependent on the size of the sample which was less than 2 mm due to the grinding process. Surface area determination can be used to estimate the amount of surface sites available for surface complexation reaction (Plate 8). Butkus (1998) reported a surface area of WTR of 10 m²/g. Dzombak and Morel (1990) estimated that WTR can bind with protons, cations and anions based on the range of sorption maxima reported from 160 m²/g to 600 m²/g. The ANC of WTR was 0.504% CCE. Thus, WTR cannot be considered a good liming material compared to the pure CaCO₃, but perhaps usage at high rates of this material can still increase the pH of acidic soil.

Plate 8 Presence of kaolinite (hexagonal shape) and illite flakes of WTR
Also, in an incubation study of sewage sludge treated soil, treatment using the highest rates of WTR (40%) gave the lowest Zn concentration in the soil solution (Figure 14) (Nur Hanani et al., 2008). Perhaps, the high Zn concentrations and high pHs at the higher WTR rates led to low solubility of Zn due to the pH effect and also the phenomenon call ageing (Lock and Janssen, 2003). The trend of Zn solubility indicates slow dissolution of Zn minerals at the initial stage, and then the concentration dropped again due to the precipitation or ageing effect. Zinc concentrations were found to be low in all treatments using different rates of WTR (2.5, 5, 10, 20, and 40%) compared to the control (0% WTR). Addition of WTR did reduce the release of Zn from the sewage sludge. Therefore, WTR can be considered to be a potential soil amendment to fix Zn in contaminated soils.

Figure 14 Soluble Zn at different rates of WTR treatments of contaminated soil.
Addition of WTR significantly reduced Zn uptake by corn plants compared to the control (Figure 15). This results show that the usage of WTR mixed with sewage sludge can significantly reduce the Zn uptake by corn. The major effect of high pH was to reduce the solubility of all micronutrients, especially Zn. Meanwhile, addition of more than 5% WTR, significantly reduced Cu uptake compared to the control. This results show that the usage of more than 5% WTR in sewage-sludge-amended soil can significantly reduce the Cu uptake by corn (Nur Hanani et al., 2008).

Figure 15 Uptake of trace metals, Zn and Cu (mg/pot) using soil amended with WTR
Phosphate compounds enhance the immobilization of metal(loid)s in soils through various processes including direct metal(loid) adsorption/substitution by P compounds, P anion-induced metal(loid) adsorption, and precipitation of metal(loid)s with solution P as metal(loid) phosphates. Depending on the source, soil application of P compounds can cause direct adsorption of metal(loid)s onto these compound through surface charge and enhanced anion-induced metal(loid) adsorption.

Phosphate rock (PR) belongs mainly to sedimentary, slightly to igneous and negligibly to metamorphic rocks. Eight percent of the world PR production is derived from the deposits of sedimentary marine origin, some 17% is derived from igneous rocks and their derivatives and the remainder comes from residual sedimentary deposits. About 90% of these deposits are used as raw materials for the manufacturing of phosphate fertilizer.

The dissolution of PR may be expressed by the equation;

\[
Ca_{10}(PO_4)_6F_2 + 12H_2O \rightarrow 10Ca^{2+} + 6H_2PO_4^- + 2F^- + 12OH^-
\]

Although the above reaction is for a fluorapatite PR, it applies to other members of the apatite minerals including reactive PR. As indicated in the above equation, the dissolution of PR results in the release of hydroxyl ions into the solution. Neutralization of the hydroxyl ions released by soil acidity enables the PR dissolution process to continue. Thus, an adequate supply of hydrogen ions is of primary importance for the continued dissolution of PR. Soil pH shows the magnitude of hydrogen ion supply, thus the use of PR depends on its reactivity and generally recommended for soils with a pH of 5.5 or less (Corley and Tinker, 2003).
Precipitation as metal(loid)-P has been proven as one of the main mechanism for the immobilization of metals such as Pb and Zn in soils. These fairly stable metal-P compounds have extremely low suitability over wide pH range, which make P application as attractive technology for managing metal(loid)- contaminated soils. Thus, application of apatite as amendment appears to be a promising soil additive for immobilizing metals in polluted soils (Soltan et al., 2012).

A glasshouse study has been conducted to assess the effectiveness of Pb immobilization due to chicken manure application using different sources of phosphate materials; bone meal (BM), Egyptian rock phosphate (ERP) and triple super phosphate (TSP) (Naim et al., 2017). From the soil fractionation study of a glasshouse experiment, the percentage of exchangeable fraction of Pb was reduced with application of P-amendments with the highest of 20.2% of reduction recorded for 2 t/ha application of TSP. This is followed by reduction in exchangeable fraction for others treatments: 2 t/ha of BM (4.1%), 4 t/ha of BM (5.1%), 1 t/ha of ERP (8.1%) and 2 t/ha of ERP at 17.6%. These treatments were recorded as being able to stabilize the Pb as indicated in the percentage reduction of phytoavailable pools into a more stable form of residual pool (Figure 17).
Another glasshouse study was conducted to determine whether lime and palm oil mill effluent (POME) amendment at 4 different rates can help reduce Cd uptake by oil palm seedlings using Gafsa Phosphate Rock as a source of P fertilizer (Aini Azura et al., 2012).

Segamat Series amended with POME showed significant differences (p<0.05) of water soluble and Fe-Mn fractions between four rates of treatment (Figure 18). This treatment decreased the exchangeable whilst increasing the residual fraction, but because the amount was not substantial, the data were not statistically different. Meanwhile, cadmium in Segamat Series amended with lime was highest in the residual fraction followed by the exchangeable, carbonate, Fe-Mn, organic and lastly water soluble fractions (Figure 19).
Letter with the same alphabet on the bars within the same soil fractions are not significantly different at p>0.05. (Comparison made within rates of treatment)

Figure 18 Concentrations of Cd fractions in Segamat Series amended with four rates of POME

Letter with the same alphabet on the bars within the same soil fractions are not significantly different at p>0.05. (Comparison made within rates of treatment)

Figure 19 Concentrations of Cd fractions in Segamat Series amended with four rates of lime
ISSUES PERTAINING TO IMMOBILIZATION TECHNIQUE

A major issue associated with immobilization technique is that although metal(loid)s become less available for plant uptake, their total concentrations in soils remain unchanged unless transported out of the soil system through leaching, colloid facilitated transport through surface runoffs, etc. The immobilized metal(loid)s may become plant available with time through natural weathering processes through the breakdown of high molecular weight metal(loid)s complexes or change in soil condition such as under waterlogged condition.

Most studies on immobilization of metal(loid)s are conducted on laboratory or glasshouse scale. More field studies are required to demonstrate the values of a range of immobilizing soil amendments to remediate contaminated soils. These field studies need to also examine the impact on the presence of co-contaminants, and also the long-term effectiveness of using soil amendments should be investigated.

CONCLUSION

There are potentials to use the industrial by-products as agricultural resources through land application. However, trace metal(loid)s in the by-products should be identified. Rates of application will be limited by trace metal(loid)s of concern and their presence in the environment should be monitored. There is also great potential of practising in-situ immobilization technique using soil amendments on agricultural soils that are not very high in metal(loid)s content. These amendments can reduce metal(loid)s uptake by the crops to below maximum permitted concentrations as gazetted in the
Malaysian Food Act (1983) and Food Regulations (1985) and thus the agricultural produce can be considered safe for human consumption.

REFERENCES

Chin, S.F. 1996. Effect of red gypsum on the yield and quality and heavy metal uptake by groundnut (Arachis hypogaea L.) grown on Bungor Series soil and sandy tailings. Final Year Project, Faculty of Agriculture, Universiti Putra Malaysia.
Che Fauziah Ishak

Samsuri, A.W., Sadegh-Zadeh, F; and She-Bardan, B.J. 2013. Adsorption of As(III) and As(V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. *Journal of Environmental Chemical Engineering.* 1(4), 981-988.

BIOGRAPHY

Che Fauziah binti Ishak was born on 7th of May 1959 in Bukit Kecil, Bukit Mertajam, Pulau Pinang. In 1977, she enrolled in University of Iowa, U.S.A. and graduated in 1981 with a Bachelor Degree in Chemistry. She continued her Masters of Science in Chemistry in 1981 at the same university. Upon returning to Malaysia, she started her career as a lecturer in 1985 at the Department of Soil Science (now known as the Department of Land Management), Faculty of Agriculture, Universiti Putra Malaysia. After serving for five years, she pursued her doctorate degree at the University of Georgia, Athens, Georgia, U.S.A. and obtained her PhD in Agronomy in 1993. She is currently serving as a Professor at the Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia and is an expert in the chemistry of heavy metals in the soil system.

To date, she has served for 32 years with UPM, fulfilling all the major responsibilities expected of her as a lecturer. She had earlier taught at the diploma and undergraduate levels, and later also including postgraduate courses. She has been actively involved in teaching the Basic Soil Science and Land Resources and Ecosystem for first degree courses, final year degree course in Environmental Soil Science, postgraduate courses in Soil and Plant Analysis and Land Contamination and Pollution. The experience gained through research as well as a deep interest in postgraduate work has led her to focus her effort and contribution to the smooth implementation of postgraduate research programmes and in the various administrative capacities (Head, Department of Land Management from 2007 -2010) and Deputy Dean (Academic, Student Affairs and Alumni) of Faculty of Agriculture from 2010 – 2016) she served at the university.
As a researcher, her subjects of interest are in contaminated soil with emphasis on heavy metals contamination of soils and assessment of land application of industrial by-products (mineral by-products and biosolids) on crop growth performance and soil fertility improvement, with special emphasis on heavy metals uptake by plants, which is becoming an important issue in food safety and is part of food security agenda. Her research also includes management of metal-contaminated soils through in-situ immobilization technique using industrial by-products such as red gypsum, coal fly ash, and water treatment residuals. To date she has had handled and completed six MOSTI funded research projects as the project leader and 15 research projects as a co-researcher, working on various aspects of soil chemistry and plant nutrition. She has also conducted a total of seven non-government funded project (contract research) such as with International Atomic Energy Agency (IAEA), Australian Centre of International Agricultural Research (ACIAR), Indah Water Konsortium (IWK), Huntsman Tioxide (M) Sdn. Bhd., CJ Bio Sdn. Bhd. and SKF Malaysia Sdn. Bhd. She hopes that the data generated during research can be utilized by policy and decision makers in the decision-making process and drawing up of policies pertaining to land application of these by-products.

She has been involved in soil, plant and fertilizer analyses activities ever since she joined UPM in 1985. She is currently the Coordinator of the Analytical Laboratory of the Department of Land Management, Faculty of Agriculture, UPM. She has been invited to give advice on the purchase of laboratory instruments and glasswares when RISDA's laboratory (ESPEK) was set up. She has also been invited to sit on the expert panel to evaluate fertilizers during RISDA's fertilizer tendering process. She has served as committee member of SIRIM Technical Committee on Fertilizers
Che Fauziah Ishak

and currently is a committee member of Malaysian Institute of Chemistry (MIC) Technical Committee on Fertilizers. Currently, she is the Chairman of SIRIM now known as MIC Technical Committee on Soil Quality. She has also been actively involved as a member of several professional societies such as Malaysian Society of Soil Science (MSSS) and is serving as Vice President from 2009 till at present, Chief Editor of Malaysian Journal of Soil Science (MJSS) from 2008 till at present, Management Committee of Agriculture Laboratory Association of Malaysia (AgLAM) from 2013 till at present.

She thrives for the best in whatever tasks she is entrusted with and excellence is her ultimate motive. She will continue to elevate herself towards greater achievements in the few years left as an academician in UPM.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Universiti Putra Malaysia for accepting me to be a part of the institution and providing a great platform for me to develop my potentials in teaching, research, consultancy and outreach activities. The success in teaching, research and consultancy services would not be possible without excellent infrastructure, grants and manpower, especially in the Faculty of Agriculture and UPM in general.

I would also like to extend my sincere thanks to the Ministry of Higher Education, Ministry of Science, Technology and Innovation (MOSTI) and UPM for providing grants for me to conduct research. I am also truly grateful to some non-governmental agencies such as International Atomic Energy Agency (IAEA), Australian Centre of International Agricultural Research (ACIAR), Indah Water Konsortium (IWK), Huntsman Tioxide (M) Sdn. Bhd., CJ Bio Sdn. Bhd. and SKF Malaysia Sdn. Bhd. for the grants given, as well as Tenaga Nasional Bhd. and Puncak Niaga Holdings Bhd. for supplying the by-products used in the conduct of this research.

A sincere appreciation also goes to all my co-researchers, Dr. Shamshuddin Jusop, Dr. Siti Zauyah Darus, Datin Dr. Rosenani Abu Bakar, Associate Professor Dr. Radziah Othman, Dr. Samsuri Abdul Wahid, Dr. Roslan Ismail and also other academic and support staff of the Department of Land Management, who has in one way or another contribute towards my achievements in UPM. Lastly, a word of thanks to all my graduate students, especially Dr. Rosazlin Abdullah, for churning data for paper publications.
LIST OF INAUGURAL LECTURES

1. Prof. Dr. Sulaiman M. Yassin
 The Challenge to Communication Research in Extension
 22 July 1989

2. Prof. Ir. Abang Abdullah Abang Ali
 Indigenous Materials and Technology for Low Cost Housing
 30 August 1990

3. Prof. Dr. Abdul Rahman Abdul Razak
 Plant Parasitic Nematodes, Lesser Known Pests of Agricultural Crops
 30 January 1993

4. Prof. Dr. Mohamed Suleiman
 Numerical Solution of Ordinary Differential Equations: A Historical Perspective
 11 December 1993

5. Prof. Dr. Mohd. Ariff Hussein
 Changing Roles of Agricultural Economics
 5 March 1994

6. Prof. Dr. Mohd. Ismail Ahmad
 Marketing Management: Prospects and Challenges for Agriculture
 6 April 1994

7. Prof. Dr. Mohamed Mahyuddin Mohd. Dahan
 The Changing Demand for Livestock Products
 20 April 1994

8. Prof. Dr. Ruth Kiew
 Plant Taxonomy, Biodiversity and Conservation
 11 May 1994

9. Prof. Ir. Dr. Mohd. Zohadie Bardaie
 Engineering Technological Developments Propelling Agriculture into the 21st Century
 28 May 1994

10. Prof. Dr. Shamsuddin Jusop
 Rock, Mineral and Soil
 18 June 1994

11. Prof. Dr. Abdul Salam Abdullah
 Natural Toxicants Affecting Animal Health and Production
 29 June 1994

12. Prof. Dr. Mohd. Yusof Hussein
 Pest Control: A Challenge in Applied Ecology
 9 July 1994

13. Prof. Dr. Kapt. Mohd. Ibrahim Haji Mohamed
 Managing Challenges in Fisheries Development through Science and Technology
 23 July 1994

14. Prof. Dr. Hj. Amat Juhari Moain
 Sejarah Keagungan Bahasa Melayu
 6 August 1994

15. Prof. Dr. Law Ah Theem
 Oil Pollution in the Malaysian Seas
 24 September 1994

16. Prof. Dr. Md. Nordin Hj. Lajis
 Fine Chemicals from Biological Resources: The Wealth from Nature
 21 January 1995

17. Prof. Dr. Sheikh Omar Abdul Rahman
 Health, Disease and Death in Creatures Great and Small
 25 February 1995
Solid Waste Management

18. Prof. Dr. Mohamed Shariff Mohamed Din
Fish Health: An Odyssey through the Asia - Pacific Region
25 March 1995

19. Prof. Dr. Tengku Azmi Tengku Ibrahim
Chromosome Distribution and Production Performance of Water Buffaloes
6 May 1995

20. Prof. Dr. Abdul Hamid Mahmood
Bahasa Melayu sebagai Bahasa Ilmu- Cabaran dan Harapan
10 June 1995

21. Prof. Dr. Rahim Md. Sail
Extension Education for Industrialising Malaysia: Trends, Priorities and Emerging Issues
22 July 1995

22. Prof. Dr. Nik Muhammad Nik Abd. Majid
The Diminishing Tropical Rain Forest: Causes, Symptoms and Cure
19 August 1995

23. Prof. Dr. Ang Kok Jee
The Evolution of an Environmentally Friendly Hatchery Technology for Udang Galah, the King of Freshwater Prawns and a Glimpse into the Future of Aquaculture in the 21st Century
14 October 1995

24. Prof. Dr. Sharifuddin Haji Abdul Hamid
Management of Highly Weathered Acid Soils for Sustainable Crop Production
28 October 1995

25. Prof. Dr. Yu Swee Yean
Fish Processing and Preservation: Recent Advances and Future Directions
9 December 1995

26. Prof. Dr. Rosli Mohamad
Pesticide Usage: Concern and Options
10 February 1996

27. Prof. Dr. Mohamed Ismail Abdul Karim
Microbial Fermentation and Utilization of Agricultural Bioresources and Wastes in Malaysia
2 March 1996

28. Prof. Dr. Wan Sulaiman Wan Harun
Soil Physics: From Glass Beads to Precision Agriculture
16 March 1996

29. Prof. Dr. Abdul Aziz Abdul Rahman
Sustained Growth and Sustainable Development: Is there a Trade-Off 1 or Malaysia
13 April 1996

30. Prof. Dr. Chew Tek Ann
Sharecropping in Perfectly Competitive Markets: A Contradiction in Terms
27 April 1996

31. Prof. Dr. Mohd. Yusuf Sulaiman
Back to the Future with the Sun
18 May 1996

32. Prof. Dr. Abu Bakar Salleh
Enzyme Technology: The Basis for Biotechnological Development
8 June 1996

33. Prof. Dr. Kamel Ariffin Mohd. Atan
The Fascinating Numbers
29 June 1996

34. Prof. Dr. Ho Yin Wan
Fungi: Friends or Foes
27 July 1996

35. Prof. Dr. Tan Soon Guan
Genetic Diversity of Some Southeast Asian Animals: Of Buffaloes and Goats and Fishes Too
10 August 1996
Che Fauziah Ishak

36. Prof. Dr. Nazaruddin Mohd. Jali
 Will Rural Sociology Remain Relevant in the 21st Century?
 21 September 1996

37. Prof. Dr. Abdul Rani Bahaman
 Leptospirosis-A Model for Epidemiology, Diagnosis and Control of Infectious Diseases
 16 November 1996

38. Prof. Dr. Marziah Mahmood
 Plant Biotechnology - Strategies for Commercialization
 21 December 1996

39. Prof. Dr. Ishak Hj. Omar
 Market Relationships in the Malaysian Fish Trade: Theory and Application
 22 March 1997

40. Prof. Dr. Suhaila Mohamad
 Food and Its Healing Power
 12 April 1997

41. Prof. Dr. Malay Raj Mukerjee
 A Distributed Collaborative Environment for Distance Learning Applications
 17 June 1998

42. Prof. Dr. Wong Kai Choo
 Advancing the Fruit Industry in Malaysia: A Need to Shift Research Emphasis
 15 May 1999

43. Prof. Dr. Aini Ideris
 Avian Respiratory and Immunosuppressive Diseases- A Fatal Attraction
 10 July 1999

44. Prof. Dr. Sariah Meon
 Biological Control of Plant Pathogens: Harnessing the Richness of Microbial Diversity
 14 August 1999

45. Prof. Dr. Azizah Hashim
 The Endomycorrhiza: A Futile Investment?
 23 October 1999

46. Prof. Dr. Noraini Abdul Samad
 Molecular Plant Virology: The Way Forward
 2 February 2000

47. Prof. Dr. Muhamad Awang
 Do We Have Enough Clean Air to Breathe?
 7 April 2000

48. Prof. Dr. Lee Chnoong Kheng
 Green Environment, Clean Power
 24 June 2000

49. Prof. Dr. Mohd. Ghazali Mohayidin
 Managing Change in the Agriculture Sector: The Need for Innovative Educational Initiatives
 12 January 2002

50. Prof. Dr. Fatimah Mohd. Arshad
 Analisis Pemasaran Pertanian di Malaysia: Keperluan Agenda Pembaharu
 26 January 2002

51. Prof. Dr. Nik Mustapha R. Abdullah
 Fisheries Co-Management: An Institutional Innovation Towards Sustainable Fisheries Industry
 28 February 2002

52. Prof. Dr. Gulam Rusul Rahmat Ali
 Food Safety: Perspectives and Challenges
 23 March 2002

53. Prof. Dr. Zaharah A. Rahman
 Nutrient Management Strategies for Sustainable Crop Production in Acid Soils: The Role of Research Using Isotopes
 13 April 2002
Solid Waste Management

54. Prof. Dr. Maisom Abdullah
 Productivity Driven Growth: Problems & Possibilities
 27 April 2002

55. Prof. Dr. Wan Omar Abdullah
 Immunodiagnosis and Vaccination for Brugian Filariasis: Direct Rewards from Research Investments
 6 June 2002

56. Prof. Dr. Syed Tajuddin Syed Hassan
 Agro-ento Bioinformation: Towards the Edge of Reality
 22 June 2002

57. Prof. Dr. Dahlan Ismail
 Sustainability of Tropical Animal-Agricultural Production Systems: Integration of Dynamic Complex Systems
 27 June 2002

58. Prof. Dr. Ahmad Zabaidi
 Baharumshah
 The Economics of Exchange Rates in the East Asian Countries
 26 October 2002

59. Prof. Dr. Shaik Md. Noor Alam S.M. Hussain
 Contractual Justice in Asean: A Comparative View of Coercion
 31 October 2002

60. Prof. Dr. Wan Md. Zin Wan Yunus
 Chemical Modification of Polymers: Current and Future Routes for Synthesizing New Polymeric Compounds
 9 November 2002

61. Prof. Dr. Annuar Md. Nassir
 Is the KLSE Efficient? Efficient Market Hypothesis vs Behavioural Finance
 23 November 2002

62. Prof. Ir. Dr. Radin Umar Radin Sohadi
 Road Safety Interventions in Malaysia: How Effective Are They?
 21 February 2003

63. Prof. Dr. Shamsher Mohamad
 The New Shares Market: Regulatory Intervention, Forecast Errors and Challenges
 26 April 2003

64. Prof. Dr. Han Chun Kwong
 Blueprint for Transformation or Business as Usual? A Structurational Perspective of the Knowledge-Based Economy in Malaysia
 31 May 2003

65. Prof. Dr. Mawardi Rahmani
 Chemical Diversity of Malaysian Flora: Potential Source of Rich Therapeutic Chemicals
 26 July 2003

66. Prof. Dr. Fatimah Md. Yusoff
 An Ecological Approach: A Viable Option for Aquaculture Industry in Malaysia
 9 August 2003

67. Prof. Dr. Mohamed Ali Rajion
 The Essential Fatty Acids-Revisited
 23 August 2003

68. Prof. Dr. Azhar Md. Zain
 Psychotherapy for Rural Malays - Does it Work?
 13 September 2003

69. Prof. Dr. Mohd. Zamri Saad
 Respiratory Tract Infection: Establishment and Control
 27 September 2003

70. Prof. Dr. Jinap Selamat
 Cocoa-Wonders for Chocolate Lovers
 14 February 2004
Che Fauziah Ishak

71. Prof. Dr. Abdul Halim Shaari
High Temperature Superconductivity: Puzzle & Promises
13 March 2004

72. Prof. Dr. Yaakob Che Man
Oils and Fats Analysis - Recent Advances and Future Prospects
27 March 2004

73. Prof. Dr. Kaida Khalid
Microwave Aquametry: A Growing Technology
24 April 2004

74. Prof. Dr. Hasanah Mohd. Ghazali
Tapping the Power of Enzymes-Greening the Food Industry
11 May 2004

75. Prof. Dr. Yusof Ibrahim
The Spider Mite Saga: Quest for Biorational Management Strategies
22 May 2004

76. Prof. Datin Dr. Sharifah Md. Nor
The Education of At-Risk Children: The Challenges Ahead
26 June 2004

77. Prof. Dr. Ir. Wan Ishak Wan Ismail
Agricultural Robot: A New Technology Development for Agro-Based Industry
14 August 2004

78. Prof. Dr. Ahmad Said Sajap
Insect Diseases: Resources for Biopesticide Development
28 August 2004

79. Prof. Dr. Aminah Ahmad
The Interface of Work and Family Roles: A Quest for Balanced Lives
11 March 2005

80. Prof. Dr. Abdul Razak Alimon
Challenges in Feeding Livestock: From Wastes to Feed
23 April 2005

81. Prof. Dr. Haji Azimi Hj. Hamzah
Helping Malaysian Youth Move Forward: Unleashing the Prime Enablers
29 April 2005

82. Prof. Dr. Rasedee Abdullah
In Search of An Early Indicator of Kidney Disease
27 May 2005

83. Prof. Dr. Zulkifli Hj. Shamsuddin
Smart Partnership: Plant-Rhizobacteria Associations
17 June 2005

84. Prof. Dr. Mohd Khanif Yusop
From the Soil to the Table
1 July 2005

85. Prof. Dr. Annuar Kassim
Materials Science and Technology: Past, Present and the Future
8 July 2005

86. Prof. Dr. Othman Mohamed
Enhancing Career Development Counselling and the Beauty of Career Games
12 August 2005

87. Prof. Ir. Dr. Mohd Amin Mohd Soom
Engineering Agricultural Water Management Towards Precision Framing
26 August 2005

88. Prof. Dr. Mohd Arif Syed
Bioremediation-A Hope Yet for the Environment?
9 September 2005

89. Prof. Dr. Abdul Hamid Abdul Rashid
The Wonder of Our Neuromotor System and the Technological Challenges They Pose
23 December 2005
Solid Waste Management

90. Prof. Dr. Norhani Abdullah

Rumen Microbes and Some of Their Biotechnological Applications
27 January 2006

91. Prof. Dr. Abdul Aziz Saharee

Haemorrhagic Septicaemia in Cattle and Buffaloes: Are We Ready for Freedom?
24 February 2006

92. Prof. Dr. Kamariah Abu Bakar

Activating Teachers’ Knowledge and Lifelong Journey in Their Professional Development
3 March 2006

93. Prof. Dr. Borhanuddin Mohd. Ali

Internet Unwired
24 March 2006

94. Prof. Dr. Sundararajan Thilagar

Development and Innovation in the Fracture Management of Animals
31 March 2006

95. Prof. Dr. Zainal Aznam Md. Jelan

Strategic Feeding for a Sustainable Ruminant Farming
19 May 2006

96. Prof. Dr. Mahiran Basri

Green Organic Chemistry: Enzyme at Work
14 July 2006

97. Prof. Dr. Malik Hj. Abu Hassan

Towards Large Scale Unconstrained Optimization
20 April 2007

98. Prof. Dr. Khalid Abdul Rahim

Trade and Sustainable Development: Lessons from Malaysia’s Experience
22 June 2007

99. Prof. Dr. Mad Nasir Shamsudin

Econometric Modelling for Agricultural Policy Analysis and Forecasting: Between Theory and Reality
13 July 2007

100. Prof. Dr. Zainal Abidin Mohamed

Managing Change - The Fads and The Realities: A Look at Process Reengineering, Knowledge Management and Blue Ocean Strategy
9 November 2007

101. Prof. Ir. Dr. Mohamed Daud

Expert Systems for Environmental Impacts and Ecotourism Assessments
23 November 2007

102. Prof. Dr. Saleha Abdul Aziz

Pathogens and Residues: How Safe is Our Meat?
30 November 2007

103. Prof. Dr. Jayum A. Jawan

Hubungan Sesama Manusia
7 December 2007

104. Prof. Dr. Zakariah Abdul Rashid

Planning for Equal Income Distribution in Malaysia: A General Equilibrium Approach
28 December 2007

105. Prof. Datin Paduka Dr. Khatijah Yusoff

Newcastle Disease virus: A Journey from Poultry to Cancer
11 January 2008

106. Prof. Dr. Dzulkefly Kuang Abdullah

Palm Oil: Still the Best Choice
1 February 2008

107. Prof. Dr. Elias Saion

Probing the Microscopic Worlds by Ionizing Radiation
22 February 2008
Che Fauziah Ishak

108. Prof. Dr. Mohd Ali Hassan
Waste-to-Wealth Through Biotechnology: For Profit, People and Planet
28 March 2008

109. Prof. Dr. Mohd Maarof H. A. Moksin
Metrology at Nanoscale: Thermal Wave Probe Made It Simple
11 April 2008

110. Prof. Dr. Dzulkhifli Omar
The Future of Pesticides Technology in Agriculture: Maximum Target Kill with Minimum Collateral Damage
25 April 2008

111. Prof. Dr. Mohd. Yazid Abd. Manap
Probiotics: Your Friendly Gut Bacteria
9 May 2008

112. Prof. Dr. Hamami Sahri
Sustainable Supply of Wood and Fibre: Does Malaysia have Enough?
23 May 2008

113. Prof. Dato’ Dr. Makhdzir Mardan
Connecting the Bee Dots
20 June 2008

114. Prof. Dr. Maimunah Ismail
Gender & Career: Realities and Challenges
25 July 2008

115. Prof. Dr. Nor Aripin Shamaan
Biochemistry of Xenobiotics: Towards a Healthy Lifestyle and Safe Environment
1 August 2008

116. Prof. Dr. Mohd Yunus Abdullah
Penjagaan Kesihatan Primer di Malaysia: Cabaran Prospek dan Implikasi dalam Latihan dan Penyelidikan Perubatan serta Sains Kesihatan di Universiti Putra Malaysia
8 August 2008

117. Prof. Dr. Musa Abu Hassan
Memanfaatkan Teknologi Maklumat & Komunikasi ICT untuk Semua
15 August 2008

118. Prof. Dr. Md. Salleh Hj. Hassan
Role of Media in Development: Strategies, Issues & Challenges
22 August 2008

119. Prof. Dr. Jariah Masud
Gender in Everyday Life
10 October 2008

120. Prof. Dr. Mohd Shahwahid Haji Othman
Mainstreaming Environment: Incorporating Economic Valuation and Market-Based Instruments in Decision Making
24 October 2008

121. Prof. Dr. Son Radu
Big Questions Small Worlds: Following Diverse Vistas
31 October 2008

122. Prof. Dr. Russly Abdul Rahman
Responding to Changing Lifestyles: Engineering the Convenience Foods
28 November 2008

123. Prof. Dr. Mustafa Kamal Mohd Shariff
Aesthetics in the Environment an Exploration of Environmental Perception Through Landscape Preference
9 January 2009

124. Prof. Dr. Abu Daud Silong
Leadership Theories, Research & Practices: Farming Future Leadership Thinking
16 January 2009
Solid Waste Management

125. Prof. Dr. Azni Idris
 Waste Management, What is the Choice: Land Disposal or Biofuel?
 23 January 2009

126. Prof. Dr. Jamilah Bakar
 Freshwater Fish: The Overlooked Alternative
 30 January 2009

127. Prof. Dr. Mohd. Zobir Hussein
 The Chemistry of Nanomaterial and Nanobiomaterial
 6 February 2009

128. Prof. Ir. Dr. Lee Teang Shui
 Engineering Agricultural: Water Resources
 20 February 2009

129. Prof. Dr. Ghizan Saleh
 Crop Breeding: Exploiting Genes for Food and Feed
 6 March 2009

130. Prof. Dr. Muzafar Shah Habibullah
 Money Demand
 27 March 2009

131. Prof. Dr. Karen Anne Crouse
 In Search of Small Active Molecules
 3 April 2009

132. Prof. Dr. Turiman Suandi
 Volunteerism: Expanding the Frontiers of Youth Development
 17 April 2009

133. Prof. Dr. Arbakariya Ariff
 Industrializing Biotechnology: Roles of Fermentation and Bioprocess Technology
 8 May 2009

134. Prof. Ir. Dr. Desa Ahmad
 Mechanics of Tillage Implements
 12 June 2009

135. Prof. Dr. W. Mahmood Mat Yunus
 Photothermal and Photoacoustic: From Basic Research to Industrial Applications
 10 July 2009

136. Prof. Dr. Taufiq Yap Yun Hin
 Catalysis for a Sustainable World
 7 August 2009

137. Prof. Dr. Raja Noor Zaliha Raja Abd. Rahman
 Microbial Enzymes: From Earth to Space
 9 October 2009

138. Prof. Ir. Dr. Barkawi Sahari
 Materials, Energy and CNGDI Vehicle Engineering
 6 November 2009

139. Prof. Dr. Zulkifli Idrus
 Poultry Welfare in Modern Agriculture: Opportunity or Threat?
 13 November 2009

140. Prof. Dr. Mohamed Hanafi Musa
 Managing Phosphorus: Under Acid Soils Environment
 8 January 2010

141. Prof. Dr. Abdul Manan Mat Jais
 Haruan Channa striatus a Drug Discovery in an Agro-Industry Setting
 12 March 2010

142. Prof. Dr. Bujang bin Kim Huat
 Problematic Soils: In Search for Solution
 19 March 2010

143. Prof. Dr. Samsinar Md Sidin
 Family Purchase Decision Making: Current Issues & Future Challenges
 16 April 2010
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>Prof. Dr. Mohd Adzir Mahdi</td>
<td>Lightspeed: Catch Me If You Can</td>
<td>4 June 2010</td>
</tr>
<tr>
<td>145</td>
<td>Prof. Dr. Raha Hj. Abdul Rahim</td>
<td>Designer Genes: Fashioning Mission Purposed Microbes</td>
<td>18 June 2010</td>
</tr>
<tr>
<td>146</td>
<td>Prof. Dr. Hj. Hamidon Hj. Basri</td>
<td>A Stroke of Hope, A New Beginning</td>
<td>2 July 2010</td>
</tr>
<tr>
<td>147</td>
<td>Prof. Dr. Hj. Kamaruzaman Jusoff</td>
<td>Going Hyperspectral: The "Unseen" Captured?</td>
<td>16 July 2010</td>
</tr>
<tr>
<td>148</td>
<td>Prof. Dr. Mohd Sapuan Salit</td>
<td>Concurrent Engineering for Composites</td>
<td>30 July 2010</td>
</tr>
<tr>
<td>149</td>
<td>Prof. Dr. Shattri Mansor</td>
<td>Google the Earth: What’s Next?</td>
<td>15 October 2010</td>
</tr>
<tr>
<td>150</td>
<td>Prof. Dr. Mohd Basyaruddin Abdul Rahman</td>
<td>Haute Couture: Molecules & Biocatalysts</td>
<td>29 October 2010</td>
</tr>
<tr>
<td>151</td>
<td>Prof. Dr. Mohd. Hair Bejo</td>
<td>Poultry Vaccines: An Innovation for Food Safety and Security</td>
<td>12 November 2010</td>
</tr>
<tr>
<td>152</td>
<td>Prof. Dr. Umi Kalsom Yusuf</td>
<td>Fern of Malaysian Rain Forest</td>
<td>3 December 2010</td>
</tr>
<tr>
<td>153</td>
<td>Prof. Dr. Ab. Rahim Bakar</td>
<td>Preparing Malaysian Youths for The World of Work: Roles of Technical and Vocational Education and Training (TVET)</td>
<td>14 January 2011</td>
</tr>
<tr>
<td>154</td>
<td>Prof. Dr. Seow Heng Fong</td>
<td>Are there "Magic Bullets" for Cancer Therapy?</td>
<td>11 February 2011</td>
</tr>
<tr>
<td>155</td>
<td>Prof. Dr. Mohd Azmi Mohd Lila</td>
<td>Biopharmaceuticals: Protection, Cure and the Real Winner</td>
<td>18 February 2011</td>
</tr>
<tr>
<td>156</td>
<td>Prof. Dr. Siti Shapor Siraj</td>
<td>Genetic Manipulation in Farmed Fish: Enhancing Aquaculture Production</td>
<td>25 March 2011</td>
</tr>
<tr>
<td>157</td>
<td>Prof. Dr. Ahmad Ismail</td>
<td>Coastal Biodiversity and Pollution: A Continuous Conflict</td>
<td>22 April 2011</td>
</tr>
<tr>
<td>158</td>
<td>Prof. Ir. Dr. Norman Mariun</td>
<td>Energy Crisis 2050? Global Scenario and Way Forward for Malaysia</td>
<td>10 June 2011</td>
</tr>
<tr>
<td>159</td>
<td>Prof. Dr. Mohd Razi Ismail</td>
<td>Managing Plant Under Stress: A Challenge for Food Security</td>
<td>15 July 2011</td>
</tr>
<tr>
<td>160</td>
<td>Prof. Dr. Patimah Ismail</td>
<td>Does Genetic Polymorphisms Affect Health?</td>
<td>23 September 2011</td>
</tr>
<tr>
<td>161</td>
<td>Prof. Dr. Sidek Ab. Aziz</td>
<td>Wonders of Glass: Synthesis, Elasticity and Application</td>
<td>7 October 2011</td>
</tr>
<tr>
<td>162</td>
<td>Prof. Dr. Azizah Osman</td>
<td>Fruits: Nutritious, Colourful, Yet Fragile Gifts of Nature</td>
<td>14 October 2011</td>
</tr>
</tbody>
</table>
Solid Waste Management

163. Prof. Dr. Mohd. Fauzi Ramlan
 Climate Change: Crop Performance and Potential
 11 November 2011

164. Prof. Dr. Adem Kiliçman
 Mathematical Modeling with Generalized Function
 25 November 2011

165. Prof. Dr. Fauziah Othman
 My Small World: In Biomedical Research
 23 December 2011

166. Prof. Dr. Japar Sidik Bujang
 The Marine Angiosperms, Seagrass
 23 March 2012

167. Prof. Dr. Zainal Hashim
 Air Quality and Children’s Environmental Health: Is Our Future Generation at Risk?
 30 March 2012

168. Prof. Dr. Zainal Abidin Mohamed
 Where is the Beef? Vantage Point form the Livestock Supply Chain
 27 April 2012

169. Prof. Dr. Jothi Malar Panandam
 Genetic Characterisation of Animal Genetic Resources for Sustainable Utilisation and Development
 30 November 2012

170. Prof. Dr. Fatimah Abu Bakar
 The Good The Bad & Ugly of Food Safety: From Molecules to Microbes
 7 December 2012

171. Prof. Dr. Abdul Jalil Nordin
 My Colourful Sketches from Scratch: Molecular Imaging
 5 April 2013

172. Prof. Dr. Norlijah Othman
 Lower Respiratory Infections in Children: New Pathogens, Old Pathogens and The Way Forward
 19 April 2013

173. Prof. Dr. Jayakaran Mukundan
 Steroid-like Prescriptions English Language Teaching Can Ill-afford
 26 April 2013

174. Prof. Dr. Azmi Zakaria
 Photothermals Affect Our Lives
 7 June 2013

175. Prof. Dr. Rahinah Ibrahim
 Design Informatics
 21 June 2013

176. Prof. Dr. Gwendoline Ee Cheng
 Natural Products from Malaysian Rainforests
 1 November 2013

177. Prof. Dr. Noor Akma Ibrahim
 The Many Facets of Statistical Modeling
 22 November 2013

178. Prof. Dr. Paridah Md. Tahir
 Bonding with Natural Fibres
 6 December 2013

179. Prof. Dr. Abd. Wahid Haron
 Livestock Breeding: The Past, The Present and The Future
 9 December 2013

180. Prof. Dr. Aziz Arshad
 Exploring Biodiversity & Fisheries Biology: A Fundamental Knowledge for Sustainable Fish Production
 24 January 2014

181. Prof. Dr. Mohd Mansor Ismail
 Competitiveness of Beekeeping Industry in Malaysia
 21 March 2014
182. Prof. Dato’ Dr. Tai Shzee Yew
Food and Wealth from the Seas: Health Check for the Marine Fisheries of Malaysia
25 April 2014

183. Prof. Datin Dr. Rosenani Abu Bakar
Waste to Health: Organic Waste Management for Sustainable Soil Management and Crop Production
9 May 2014

184. Prof. Dr. Abdul Rahman Omar
Poultry Viruses: From Threat to Therapy
23 May 2014

185. Prof. Dr. Mohamad Pauzi Zakaria
Tracing the Untraceable: Fingerprinting Pollutants through Environmental Forensics
13 June 2014

186. Prof. Dr. -Ing. Ir. Renuganth Varatharajoo
Space System Trade-offs: Towards Spacecraft Synergisms
15 August 2014

187. Prof. Dr. Latiffah A. Latiff
Transformasi Kesihatan Wanita ke Arah Kesejahteraan Komuniti
7 November 2014

188. Prof. Dr. Tan Chin Ping
Fat and Oils for a Healthier Future: Makro, Micro and Nanoscales
21 November 2014

189. Prof. Dr. Suraini Abd. Aziz
Lignocellulosic Biofuel: A Way Forward
28 November 2014

190. Prof. Dr. Robiah Yunus
Biobased Lubricants: Harnessing the Richness of Agriculture Resources
30 January 2015

191. Prof. Dr. Khozirah Shaari
Discovering Future Cures from Phytochemistry to Metabolomics
13 February 2015

192. Prof. Dr. Tengku Aizan Tengku Abdul Hamid
Population Ageing in Malaysia: A Mosaic of Issues, Challenges and Prospects
13 March 2015

193. Prof. Datin Dr. Faridah Hanum Ibrahim
Forest Biodiversity: Importance of Species Composition Studies
27 March 2015

194. Prof. Dr. Mohd Salleh Kamarudin
Feeding & Nutritional Requirements of Young Fish
10 April 2015

195. Prof. Dato’ Dr. Mohammad Shatar Sabran
Money Boy: Masalah Sosial Era Generasi Y
8 Mei 2015

196. Prof. Dr. Aida Suraya Md. Yunus
Developing Students’ Mathematical Thinking: How Far Have We Come?
5 June 2015

197. Prof. Dr. Amin Ismail
Malaysian Cocoa or Chocolates: A Story of Antioxidants and More...
14 August 2015

198. Prof. Dr. Shamsuddin Sulaiman
Casting Technology: Sustainable Metal Forming Process
21 August 2015

199. Prof. Dr. Rozita Rosli
Journey into Genetic: Taking the Twists and Turns of Life
23 October 2015
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Prof. Dr. Nor Aini Ab Shukor</td>
<td>The Un(Straight) Truth About Trees</td>
<td>6 November 2015</td>
</tr>
<tr>
<td>201</td>
<td>Prof. Dato’ Dr. Ir Mohd Saleh Jaafar</td>
<td>Advancing Concrete Materials and Systems: The Search Continues</td>
<td>13 November 2015</td>
</tr>
<tr>
<td>202</td>
<td>Prof. Dr. Maznah Ismail</td>
<td>Germinated Brown Rice and Bioactive Rich Fractions: On Going Journey form R&D to Commercialisation</td>
<td>29 April 2016</td>
</tr>
<tr>
<td>203</td>
<td>Prof. Dr. Habshah Midi</td>
<td>Amazing Journey to Robust Statistics Discovering Outliers for Efficient Prediction</td>
<td>6 May 2016</td>
</tr>
<tr>
<td>204</td>
<td>Prof. Dr. Mansor Ahmad @ Ayob</td>
<td>Going Green with Bionanocomposites</td>
<td>27 May 2016</td>
</tr>
<tr>
<td>205</td>
<td>Prof. Dr. Fudziah Ismail</td>
<td>Exploring Efficient Numerical Methods for Differential Equations</td>
<td>23 September 2016</td>
</tr>
<tr>
<td>206</td>
<td>Prof. Dr. Noordin Mohamed Mustapha</td>
<td>Meandering Through the Superb Scientific World of Pathology: Exploring Intrapolations</td>
<td>30 September 2016</td>
</tr>
<tr>
<td>207</td>
<td>Prof. Dr. Mohd. Majid Konting</td>
<td>Teaching for Quality Learning: A Leadership Challenge</td>
<td>21 October 2016</td>
</tr>
<tr>
<td>208</td>
<td>Prof. Dr. Ezhar Tamam</td>
<td>Are University Students Getting Enough Interethnic Communication and Diversity Engagement Experiences? Concerns and Considerations</td>
<td>11 November 2016</td>
</tr>
<tr>
<td>209</td>
<td>Prof. Dr. Bahaman Abu Samah</td>
<td>Enhancing Extension Research using Structural Equation Modeling</td>
<td>18 November 2016</td>
</tr>
<tr>
<td>210</td>
<td>Prof. Dr. Wen Siang Tan</td>
<td>Fighting the Hepatitis B Virus: Past, Present & Future</td>
<td>9 December 2016</td>
</tr>
<tr>
<td>211</td>
<td>Prof. Dr. Mahmud Tengku Muda</td>
<td>Postharvest: An Unsung Solution for Food Security</td>
<td>20 January 2017</td>
</tr>
<tr>
<td>212</td>
<td>Prof. Dr. Sherina Mohd Sidik</td>
<td>Mental Health in the Community-Malaysia: A 20-Year Journey of a Family Medicine Consultant</td>
<td>27 January 2017</td>
</tr>
<tr>
<td>213</td>
<td>Prof. Dr. Zaidon Ashaari</td>
<td>Low Density Wood: From Poor to Excellent</td>
<td>10 February 2017</td>
</tr>
<tr>
<td>214</td>
<td>Prof. Ir. Dr. Mohd Zainal Ab. Kadir</td>
<td>Lightning: A Bolt from the Blue</td>
<td>17 February 2017</td>
</tr>
<tr>
<td>215</td>
<td>Prof. Datin Dr. Rozi Mahmud</td>
<td>No Less Than a Women: Improving Breast Cancer Detection and Diagnosis</td>
<td>17 March 2017</td>
</tr>
<tr>
<td>216</td>
<td>Prof. Dr. Jegatheswaran Ratnasingam</td>
<td>The Malaysian Furniture Industry: Charting Its Growth Potential</td>
<td>7 April 2017</td>
</tr>
<tr>
<td>217</td>
<td>Prof. Dr. Loh Teck Chewn</td>
<td>Animal Feed: The Way Forward</td>
<td>21 April 2017</td>
</tr>
<tr>
<td>218</td>
<td>Prof. Dr. Luqman Chuah Abdullah</td>
<td>Rigid Ceramic Filters: Numerical Simulation of The Pressure & Velocity Distributions</td>
<td>5 May 2017</td>
</tr>
</tbody>
</table>
Che Fauziah Ishak

219. Prof. Dr. Lai Oi Ming
Diacylglycerols: Healthy Fats of the Future
19 May 2017

220. Prof. Dr. Rozumah Baharudin
Parenting: What Matters Most?
25 May 2017

221. Prof. Dr. Laily Paim
Kemiskinan & Kerentanan: Penelitian Konsep dan Pengukuran dalam Era Revolusi Industri 4.0
20 Oktober 2017

222. Prof. Dr. Shuhaimi Mustafa
Halal Food Authenticity: Does it Matter to You?
25 November 2017