MEANDERING THROUGH THE SUPERB
SCIENTIFIC WORLD OF PATHOLOGY

Exploring Intrapolations

Professor Dr. Noordin Mohamed Mustapha

INAUGURAL LECTURE SERIES

The inaugural lectures are given by Honored faculty members within the University who have obtained the rank of full professor. This event gives the opportunity to deliver a lecture to fellow faculty and other university guests concerning their work and research interests.
MEANDERING THROUGH THE SUPERB
Scientific World of Pathology

Exploring Intrapolations
MEANDERING THROUGH THE SUPERB SCIENTIFIC WORLD OF PATHOLOGY

Exploring Intrapolations

Professor Dr. Noordin Mohamed Mustapha
DVM (UPM), MSc (UPM), PhD (Murdoch)

30 September 2016
Auditorium
Fakulti Perubatan Veterinar
Universiti Putra Malaysia

Universiti Putra Malaysia Press
Serdang • 2016
http://www.penerbit.upm.edu.my
Contents

Abstract 1

Introduction 3

Meandering Through the World of Toxicology: Brachiaria Decumbens Toxicity in Sheep 5

Meandering Through the World of Forensics: Estimation on Time of Death 14

Meandering Through the World of Virology: Pathogenesis of Boid Inclusion Body Disease 24

Meandering Through the World of Polluted Air: Transboundary Haze 34

Meandering Through the World of Emerging and Re-emerging Diseases: Transboundary Infection 44

Meandering Through the World of Nutraceuticals: Local Herbs with Pharmaceutical Potential 51

Concluding Remarks 58

References 59

Biography 71

Acknowledgements 75

List of Inaugural Lectures 77
ABSTRACT

Although literally pathology can be defined as the “study of sufferings”, it by no means signifies that a pathologist benefits by seeing an individual enduring pain from an ailment. In fact, many regard pathology as the turning point of life and it is usually dubbed as “The field where herein death rejoices to aid the living”. Indeed, a very true slogan since pathology assists in explaining the cause and mechanism of death. Through this process of pathogenesis or pathophysiology, the outcome (between the interaction of host, environment and agent) is used to develop an effective treatment, control and prevention regime. An old branch of biological science, pathology works closely with the other “physical” components of chemistry and physics to elucidate an abnormality. The needs of these two physical science components is inevitable in explaining pathologies dealing with haemodynamics of blood flow, aerodynamics of particulates, phagocytic activity, metabolic derangements, action potential, forensic investigation and many others. In actual fact, it forms the backbone of Koch’s postulate which, currently, either willingly or otherwise, is used in most biological research models. This includes that of infectious (from the novel prion to naked-eye parasites), metabolic, endocrine-based or toxic (all forms) origin. Most biomedical-based research relies on inventing a functional model of a disease or condition. This can only be conclusively verified using pathology where even failure to elicit biochemical changes by the body can be detected at either the microscopic or ultrastructural level. Currently, many regard pathology as a study of pre-disease condition where through biopsies, an effective treatment, control, prevention and a prognosis can be derived.

Furthermore, pathology at almost all levels, is the only field that can state if a change in a tissue is a lesion, artifact or post mortem effect. This is of utmost importance in both research and forensic investigation. Nevertheless, despite no changes or new
additions made in the terminologies used, it still remains valid and has kept itself abreast with developments in molecular and nanotechnological sciences. This has given rise to the birth of many newer branches of pathology that employ molecular techniques and nanotechnology in arriving at a confirmed diagnosis. In the medical context, the historic notion that pathology is involved with death or post mortem is currently irrelevant as mentioned earlier, since it has been successfully exploited to detect states of pre-disease conditions.

Likewise in research, pathology is not just a tool but rather an inevitable adjunct for excellence where a postulated functional model is being proven. Indirectly, while known to be associated with a non-living soul, a pathologist is an indispensable research partner in many of today’s research. This review will try to illustrate the significance of the meandering path taken by pathology in the ever changing world of research and diagnosis. Examples used will be those encountered in our quest to solve problems in toxicology, forensics, environmental pollution, emerging and re-emerging diseases and the development of new nutraceutical products. It is clearly discernible that pathology was, is and will still remain as an important component in most biological science research as will be exemplified in this review.

Pathology has helped many to achieve breakthroughs in toxicology, forensic science, environmental issues, nutraceutical and transboundary disease investigations. In Brachiaria decumbens toxicity, the mechanism of liver damage and associated signs were elucidated. The use of pathology in forensic investigation attempted to estimate the time of death following the advent of virtopsy in the veterinary field. It was found that the air pollutants, especially that of PM2.5, can lead to acute and chronic changes in the lung while garlic and blackseed can alleviate these changes. Zerumbone is an effective compound that could reverse artheroscelerotic changes.

Keywords: pathology, toxicology, forensic, virology, haze, emerging & re-emerging disease, nutraceuticals
INTRODUCTION
Pathology is a study of the morphology and function of an injured tissue, organ or system as opposed to that of anatomy and physiology. Pathology, in the sense of morbid anatomy and morbid histology, is the study of alterations which develop as a result of pathogenic aetiologies or agents. Structural changes are called lesions while the genesis of this abnormality is known as pathogenesis (pathophysiology). The public at large tend to regard pathology as a state at the moment of death and equate it to an autopsy.

Unfortunately, reaction of a tissue in an injury is not a state but a process, ever changing in its manifestations. It is a process that may end in death or recovery, which may be acute or fulminating in its manifestations. The component of a pathogenesis comprises the dynamics of interaction between the agent (aetiology), host and environment. The aftermath of the deleterious interaction is manifested as a clinical sign. Diagnosis on the other hand is the process of tracing the aetiology of a disease or condition via the clinical signs and lesions. Thus, the signs and its related biochemical derangement (from blood or plasma) are intrapolated parameters which at times are still in a state of uncertainty. However, by exploring the tools of pathology, usually that of cellular or ultrastructural level (samples can be obtained either through biopsy or autopsy/necropsy), not only can the likelihood of an agent be determined, but also the possible pathogenetic mechanisms explained.

Finally, Thompson (1984) states that “We must concern ourselves with the process that have got out of place, out of time and out of tune as well as with the order of structure, for disease may be defined as merely a summation of chemical reactions that have gone wrong. It is the high function of the pathologist not merely to
attach labels to the lesions when it is seen, but to reconstruct the course of events from the earliest inception of the disease to the final moment”.

The question is now how all these are related to research or how pathology can serve as an adjunct to research excellence. As in most biological research, especially those in the field of medicine and pharmacy, a functional model of the disease has to be developed without which, the research effort will be made futile and the findings null and void. This developed model needs to be verified as valid and correct, which in no other way is endorsed via pathology. This review will try, at its very best, to bring the reader into the superb wandering world of pathology that has over the years assisted many research explorations to the targeted success.

It will be incomplete if the hidden messages like that in any other disciplines on life and living are not mentioned. Spiritually and socially, disease events described and explained in pathology can be used towards the betterment of life now and thereafter. To be fascinated by how the body makes use of pathology weaponry to adapt itself by suiting needs during a crisis, will bring one closer to the Creator. At each and every moment, the body’s arsenal is put on an alert state of preparedness. Any trigger alarming harm will incite an effective proper action, like a call for inflammation when exposed to a foreign agent. This can be utilised in daily life when an occasion arises for an appropriate action, to achieve maximal effect within a short period of time, i.e to tactfully handle issues or crises. If inflammation is equated to war, then one would always refrain from insulting others. If it needs to defend itself, as the ultimatum of inflammation, it would be restoration to normal or back to the original state, but without taking what is not needed or that which does not belong to the defending host.
MEANDERING THROUGH THE WORLD OF TOXICOLOGY: *BRACHIARIA DECUMBENS* TOXICITY IN SHEEP

Insufficient intake and utilisation of nutrients from available local feed resources contributed to the poor production performance of small ruminants, leading to a sluggish industry in Malaysia (Noordin, 1996). Success in economically utilising very nutritive and highly productive grasses such as *B. decumbens* and/or their by-products is believed to be able to solve this problem. Considering the significance and pertinent concerns mentioned about the sad slothful ruminant industry, it is possible to exploit *B. decumbens* advantageously without serious health risks if the toxic constituents and pathogenesis involved are fully understood and thus pragmatic measures can be proposed.

Unfortunately, *B. decumbens* toxicity is a setback to jumpstart the sluggish ruminant industry (Briton and Paltridge, 1940). It is a condition similar to hepatogenous photosensitisation syndrome (HPS) in small ruminants that has been reported globally (Assumaidae et al., 2010; 2012). In general, salient clinical signs such as jaundice (Figure 1A) and photosensitization (Figure 1B), submandibular oedema or bottle-jaw (Figure 1C) with pathologic evidence of hepatic necrosis (Figure 2A and 2B) and crystal-like clefts (Figure 2C) in affected hepatocytes and the bile ductular system were observed in natural and experimental cases of *B. decumbens* intoxication (Abas et al., 1985; Noordin et al., 1989; Graydon et al., 1991). Occasionally, renal damage in the form of acute tubular necrosis (Figure 3) is seen, leading to the initial believe of excessive copper involvement (Noordin et al., 1987). However, the role of copper was later nullified based on onset, tissue copper and lesion distribution concentration. The metabolite/s of the toxin while in the act of being excreted through the urine is itself...
Meandering Through the Superb Scientific World of Pathology

toxic to the kidneys (Zhang et al., 2000; 2001; Assumaidaee et al., 2010). Nevertheless, physiologically it was found that ruminal stasis (Figure 4) occurred although it could be partially attributed to anorexia (Abdullah et al., 1988) or the toxins, or both.

The mechanisms related to the pathogenesis, including the retention of photodynamic pigments and liver damage in HPS by toxic principles, remained unanswered since the forties (Briton & Paltridge, 1940) before being partially elucidated (Noordin, 1989). The HPS that is clinically manifested as icterus, photosensitisation and occasionally haemoglobinuria, is considered as liver based poisoning in small ruminants (Noordin, 1989; Zhang et al., 2000; Zhang et al., 2001; Assumaidaee et al., 2010). Sporadic outbreaks of this syndrome are commonly associated with grazing of certain plants, although there is considerable discrepancy in relation to the reported aetiologies in different regions.

Figure 1 Photograph of typical signs and lesions seen in Brachiaria decumbens toxicity. (A). Jaundice of serosal, mucosal and subcutaneous tissue as evidenced by marked yellowing of affected tissue. (B). Photosensitisation usually affecting lightly pigmented skin of the dorsum, ears and face which may lead to depilation of wool. (C). Submandibular oedema also known as bottle-jaw is manifested as a result of hepatic failure (hypoalbuminaemia).
Figure 2 Post mortem observation of the affected liver shows discernible lesions at the gross, microscopic and ultrastructural levels. (A). Photograph of an affected liver shows marked icterus. (B). Photomicrograph of the liver histology depicts an admixture of fatty degeneration and necrosis without a specific lobular pattern (H&E, X200). (C). Electronmicrograph of the liver exhibits the presence of cholesterol-like clefts (arrows).

Figure 3 The changes in the kidney, as that of the liver, can be seen at gross, microscopic and ultrastructural levels. (A). Photomicrograph of the kidney depicts severe tubulonephrosis (H&E, X200). (B). Electronmicrograph of the affected kidney reveals proximal tubular epithelium microvilli desquamation along with shedding of globules of various sizes into the tubular lumen (arrow). (C). Ultrastructurally, mitochondriopathy, characterised by mitochondrial swelling, cristolysis and cristorrhexis, is seen in the affected tubular epithelium.
Figure 4 Photograph of a physiogram on ruminal peristalsis recording detects progressive stasis and a drop in pH towards the end of the toxicity trial.

Saponins and/or unknown toxins within those plants, with or without mycotoxins, have been speculated to contribute to the development of HPS. However, the mycotoxin theory involvement in *B. decumbens* toxicity was later scientifically dismissed by Abas-Mazni et al. (1988) following failure to elicit toxicity using fusty grass. Abas-Mazni et al. (1988) have thus paved an easier, faster and economically viable means for researchers to focus on other possible agent/s and mechanisms involved in this toxicity (Noordin, 1989).

Although the finding of Abas Mazni et al. (1988) have greatly assisted future researchers to ignore the role of mycotoxins in their pursuit of explaining this toxic mechanism, the mystery of the toxic principles or parent compounds involved in *B. decumbens* intoxications still continue to affect mainly sheep, along with an unclear pathogenesis. Consequently, no practical means of
prevention have been proposed for this intoxication since the toxic principle and its pathogenetic mechanism remains unanswered.

The suggestion to eradicate this grass is rather impractical, not only in terms of the acreage involvement and high cost, but as it would also be a great loss due its highly nutritious yield. The best pragmatic approach is to utilise the grass with the absence of or with minimal toxic effects. However, no definite conclusion can be drawn on how this would be possible (Noordin, 1989). The only partially pragmatic approach in the prevention is either rotational grazing in combination with other grasses or complete avoidance of feeding this grass to small ruminants (Noordin, 1989; Abdullah et al., 1989; Zhang et al., 2000). On the other hand, the other enigma of this toxicity is that cattle (at least) in Malaysia are not clinically affected (Noordin et al., 1989).

It was then hypothesised that *B. decumbens* intoxication could be caused by the constituents present in the grass which will later be metabolized in the rumen into hepatotoxic components, leading to HPS (Noordin, 1989). The discrepancy between the ruminal microflora population in cattle and sheep would also account for their differences in susceptibility. The first hypothesis postulated by Noordin (1989) as seen later, was proven to be true in two later findings (Abdullah et al, 1989; Lajis et al., 1993; Zhang et al., 2000).

This warranted a much more comprehensive research based on the hypothesis that the toxin is formed in the rumen of sheep following ingestion. Studies were then carried out to elucidate the aetiology and pathogenesis of *B. decumbens* intoxication in sheep in Malaysia, aimed at ending the shrouded mystery, with the following objectives:

- to determine possible anti-nutritional compounds present in the grass that may exacerbate toxicity;
Meandering Through the Superb Scientific World of Pathology

- to determine the role of lipid peroxidation and anti-oxidant status in generating hepatic damage in *B. decumbens* intoxication;
- to correlate the pathological change, free radical metabolism and mineral interaction in the development of *B. decumbens* intoxication;
- to elucidate the effects of Cu and Zn administration in the development of *B. decumbens* intoxication;
- to isolate and characterise the toxic principle/s that is/are involved in *B. decumbens* intoxication; and
- last but not least, to explain why cattle are not affected by this toxicosis (at least in Malaysia).

Thus, all studies conducted were aimed at elucidating the pathogenesis which in turn would lead to better understanding of the disease and provide pragmatic strategies in treating and preventing *B. decumbens* intoxication.

Possible Anti-nutritional Compound Exacerbating *B. decumbens* Toxicity

Experiments were conducted to obtain a baseline value of mineral and phytate levels in *B. decumbens*, the effect of feeding *B. decumbens* to sheep, the role of copper (Cu) in *B. decumbens* intoxication, the effectiveness of zinc (Zn) and its role in the prevention of *B. decumbens* intoxication.

Samples of *B. decumbens*, collected from five different farms representing Peninsular Malaysia, were air-dried, milled and analysed for concentrations of selected minerals and phytate. It was found that the molar ratios of Cu:Zn, Cu:Mo and Cu:Fe were low and this suggested that Cu deficiency *per se* and not toxicity could be involved in the toxicity of *B. decumbens*. Furthermore,
Noordin Mohamed Mustapha

this low ratio of the trace mineral might aggravate the development of photosensitization in unpigmented or lightly pigmented areas of affected animals. Likewise, the Zn:phytate ratio could predispose to Zn deficiency during intoxication (Noordin et al., 2000).

Aetiology of *B. decumbens* Toxicity: Isolation and Characterization of the Toxic Compound/s

Studies on the isolation and characterisation of the toxic compound yielded a diosgenin (Figure 5). Toxicity test of diosgenin from *B. decumbens* in mice indicated a LD$_{50}$ of 410.5 mg/kg which by calculation conforms to a similar dosage in sheep (Zhang et al., 2000; 2001).

Based on the results from studies conducted (Zhang et al., 2000), the postulated pathogenesis of this intoxication was then successfully verified. This again proved that the earlier hypotheses of Noordin (1989) and those of Abdullah et al. (1992) and Lajis et al. (1993) were true.

These findings solved the enigma that had surrounded the aetiopathogenesis of HPS for more than 50 years (Noordin, 1989; Zhang et al., 2001). Additional data on *B. decumbens* toxicity includes findings of severe neurological dysfunction observed in sheep 4 weeks after grazing on *Brachiaria decumbens*. These neurological disorders included the stamping of forelegs, stargazing, incoordination, head-pressing against the fence and circling movements. Histologically, numerous vacuolations of various sizes were observed in the white matter of the brain, giving rise to a spongy appearance (Abdullah et al., 1989).
Pathogenesis of *B. decumbens* Toxicity

The toxic constituents present in *B. decumbens* may enhance lipid peroxidation of the cell membrane and impair the antioxidant system. The progression of *B. decumbens* intoxications can be exacerbated by Cu supplementation via a proposed synergistic interaction between free ionic Cu and essential membranous macromolecules. The development of *B. decumbens* intoxication can be partially prevented by the administration of zinc (Zn), due to its stabilising effects on macromolecular components in membranes. An attempt was made to clarify the association between zinc (Zn) and antioxidants due to Zn supplementation on lipid peroxidation occurring during *B. decumbens* intoxication (Zhang et al., 2001). The concentrations of Zn, copper, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were thus determined in tissues. It was seen that there was a gradual increment in the concentration of Zn and MDA in serum and hepatocytic SOD in groups given Zn plus *B. decumbens*. A decline in erythrocytic GSH-Px and SOD, and lower concentration of reduced glutathione in hepatocyte cytosols, were also detected in these sheep. It is thus highly suggestive that Zn supplementation may depress antioxidant status and enhance lipid peroxidation during *B. decumbens* intoxication.

Tolerance of Cattle to *B. decumbens* Toxicity

Although *B. decumbens* was not toxic when fed to cattle (Noordin et al., 1988), the infusion of rumen liquor from *B. decumbens* intoxicated sheep into the rumen of cattle produced evidence suggestive of hepatic and renal dysfunction. Several biochemical changes were observed, including increases in serum aspartate amino transferase, serum creatinine and blood urea nitrogen and a
marked reduction in the plasma bromosulphthalein clearance. This further supported the earlier hypothesis of ruminal metabolism of *B. decumbens* in ovines developing into toxic compounds.

Aetiopathogenesis of *B. decumbens* Toxicity in Sheep

Following these findings, this well adapted grass (to a wide range of well-drained soils including humid tropic soils) that has been extensively planted in almost all government farms in Malaysia could be utilised with minimal toxic incidence.

Figure 6 outlines the likely aetiopathogenesis of *B. decumbens* toxicity in sheep. Basically, following ingestion, the disogenin from the grass is metabolised by the ruminal microflora. Then, after uptake by hepatocytes, the sapogenin and its metabolites are biotransformed into epi-similagenin and epi-sarsapogenin (Figure 5). This process is catalysed by the mixed function oxidases system, yielding intermediate free radicals. It is likely that at this point, the hepatocytes began to cause damage, at both cellular and subcellular levels. The damage is due to membrane lipid peroxidation leading to interference in the transport and excretion of endogenous metabolites which in turn lead to jaundice and photosensitisation.
Meandering Through the Superb Scientific World of Pathology

Figure 5 The compounds found in *B. decumbens* and their analogues following ruminal and hepatic metabolism. A. The chemical structure of diosgenin as compared to anabolic steroid. B. The chemical structures of the *B. decumbens* analogue that is formed once ingested by sheep.

MEANDERING THROUGH THE WORLD OF FORENSICS: ESTIMATION ON TIME OF DEATH

The quest for what transpires at post-mortem in relation to time-dependent changes in an organism spawned the interest to utilize pathology to understand these processes. A variety of methods have been employed to determine rates of carcass decomposition which are of interest in the investigation of cause and manner of death in routine veterinary necropsy practice. Such estimates of post-mortem decomposition rates are often not admissible in courts as they are devoid of strong
research basis for statistically significant general conclusions on the processes.

These methods include algor mortis (post-mortem body cooling), rigor mortis (post-mortem muscle stiffening), livor mortis (colour changes due to gravitational force) and putrefaction (changes in odour) which comprise the most conservative of post-mortem interval estimation methods. Advances in forensic research have revealed that events occurring after death are much more complex than earlier assumed, even as some of these events are time-dependent. Further intense study is thus required to link post-mortem intervals with post-mortem physical, biochemical, pathological and genetic changes that occur, for forensic purposes.

Our investigations, with the aid of a background in pathology, led us to utilize various understandings of the pathological processes to grasp the interplay between time and post-mortem organismal changes. Methods used ranged from conservative ones, such as, algor mortis – using thermocouples and mercury bulb thermometers, to high throughput microarray whole genome expression.
Figure 6 The aetiopathogenesis of *B. decumbens* intoxication in sheep with particular emphasis on the liver. (LI = large intestine; SI = small intestine)

Algor Mortis

Post-mortem body cooling (algor mortis) is a well-known phenomenon to pathologists. The heat loosing mechanism of organisms after death depends on the body heat at the time of death as well as the manner of death, whether it is natural or unnatural. Heat is generated physiologically through metabolic processes
ante-mortem as well as from musculoskeletal movements and contractions peri-mortem. The amount of core body heat thus generated affects the rate of algor mortis. Algor mortis has been used for forensic purposes in order to estimate time of death, especially in criminal investigations involving humans. Algor mortis is currently considered to be more reliable in PMI estimation in comparison to other methods such as biochemical changes, cell death rate (necrosis), electrical alterations and electrolyte changes and bioamines distribution.

Henssge (1988) was the first advocate of the use of algor mortis for PMI estimation for which he developed a normogram for field use by the police. He observed that in temperate climates, despite the cool ambient temperature, there is usually a lag phase in the rate of drop in body temperature that resembles a plateau when plotted on a graph. Hence this was called a “post-mortem plateau”. This finding was of importance in that it was not in consonance with the long held assumption that body cooling follows the Newton’s law of thermal conductivity of matter which was thought to be at a rate of 1.5°F per hour.

It was expected that in tropical climates such as in Malaysia, where ambient temperatures often matches that of the core human body temperature, algor mortis would maintain such a plateau or even spike transiently (Kaliszan, 2012). Contrary to anecdotal expectations, we discovered that in Malaysia, neither the plateau nor the spike existed (Figures 7-9) at post-mortem in dogs (Abdulazeez & Noordin, 2010). The temperature drop per unit hour (Table 1) followed a strongly exponential pattern with an R value of 0.91 as represented by the equation:

\[t = -8.47 \ln \left(\frac{[T_r - T_a]}{13.5} \right) \]
\[t = -10.42 \ln \left(\frac{[T_h - T_a]}{12.33} \right) \]

I (Rectal model)
II (Hepatic model)
Meandering Through the Superb Scientific World of Pathology

Where $T =$ temperature of any organ at any point in time post-mortem

$T_a =$ average ambient temperature (27°C)

a and $b =$ coefficients derived from curve fit

t =$ time of death

Figure 7 The pattern of drop of post-mortem rectal temperature over twenty-four hours

Figure 8 The curve-fit model for the average temperature differences ($T_r - T_a$) for the rectum, also showing the standard error and correlation coefficient values. X axis is time (hours) and the Y axis is the $T_r - T_a$
Noordin Mohamed Mustapha

(°C).

Figure 9 The pattern of drop of post-mortem hepatic temperature over twenty-four hours

Table 1 The rates of drop per hour of post-mortem temperature for organs over twenty-hours

<table>
<thead>
<tr>
<th>Organ</th>
<th>Animal ID</th>
<th>Rectal</th>
<th>Hepatic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.537</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.532</td>
<td>0.533</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.513</td>
<td>0.451</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.560</td>
<td>0.475</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.527</td>
<td>0.452</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.539</td>
<td>0.487</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.660</td>
<td>0.603</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.520</td>
<td>0.305</td>
</tr>
</tbody>
</table>

Mean ± SD 0.55±0.05 0.48±0.09
The absence of the post-mortem plateau is important in understanding the context of the use of Henssge’s nomogram in veterinary forensic practice. It was observed that the nomogram was valuable for use in subjects heavier than 10kg, even as the correction factors used for humans may not be applicable for use in animals (Henssge, 1988). We thereby came up with a pragmatic equation model for field use (Abdulazeez & Noordin, 2010).

We investigated this phenomenon in smaller-sized animals (Sprague-Dawley rats) using thermography. Aside from the absence of a plateau in this species at room temperature, our study revealed that heat dissipation occurred at different rates for different body parts. The limbs and the tail lost heat most rapidly in contrast to the abdominal region that slowly lost heat over an 8 hour period.

Table 2 The coefficients a and b for organs with 95% lower and upper confidence bounds

<table>
<thead>
<tr>
<th>Organ</th>
<th>a (95% CI)</th>
<th>b (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectal</td>
<td>13.5 (13.26, 13.74)</td>
<td>-0.118 (-0.358, 0.122)</td>
</tr>
<tr>
<td>Hepatic</td>
<td>12.33 (11.84, 12.82)</td>
<td>-0.096 (-0.586, 0.394)</td>
</tr>
</tbody>
</table>

Post-mortem Radiography

The process of carcass/cadaver decomposition begins immediately in tissues that are cut short of oxygen supply. Necrosis and putrefaction takes effect leading to production of gas by-products (methane, hydrogen sulphide and many more) and odoriferous changes. The gas production is a result of bacterial colonization of tissues following the death of an animal. These gases result in the swelling of luminal organs such as the stomach (bloating) and intestines and can be observed by radiography as radiolucent opacities within the tissues. Previous studies established the ability
of 2D-radiography to identify these gaseous changes but limited reference was made in those studies about the correlation between post-mortem gas formation and post-mortem interval (Abdulazeez and Noordin, 2016). We therefore conducted a study to determine the progression of post-mortem gas formation in luminal organs with a goal to identify an alternative means of estimating PMI using imaging modality for routine clinic practice. We found that the cardiac chambers accumulated gas in a manner reflective of post-mortem intervals (Figure 10). The right atrium accumulated gas as early as 6 hours post-mortem followed by the right ventricle, left atrium and finally the left ventricle, over a period of 24 hours (Abdulazeez and Noordin, 2014).

Figure 10a-f Radiograph showing schematic outline of the thorax (a) and serial progression of post-mortem gas formation in the thorax and cardiac chambers of dogs (b – f) at early (24 hours) post-mortem interval.
Whole Genome Expression

Pathology involves the study of changes in structure and function of cells, tissues, organs and systems. At death the myriad of events that initiate the post-mortem decomposition process is still a subject of intense research. Studies have shown that genetic materials such as the deoxyribonucleic acids (DNA) and ribonucleic acids (RNA) of human and some animals continue to be active for a while even after death (Kayser & Knijff, 2011).

We investigated the concentration and purity of RNA in dogs to compare the rate of RNA degradation (Figure 11) with the post-mortem interval. Our findings revealed no correlation because RNAs are largely unstable at post-mortem but are very valuable for high throughput studies such as microarray whole genome expression (Table 3) analysis (Abdulazeez, 2011).

Figure 11 The graphical representation of the downward trend of RNA optical density values over time as PMI lapses.

Serial post-mortem microarray gene expression analyses (Table 3) revealed regulation (up or down) patterns involving genes associated with cell death and physiologic regulatory functions (Abdulazeez, 2011). Findings in this study have opened up the gates to questions hovering around the scientific definition of death.
Table 3 The expression profile of selected genes over a thirty hour PMI period

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Animal</th>
<th>Fold changes</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20th</td>
<td>10th</td>
</tr>
<tr>
<td>Beta-Actin</td>
<td>ACTB*</td>
<td>1.04</td>
<td>2.21</td>
</tr>
<tr>
<td>Beta-2-microglobulin</td>
<td>B-2-M*</td>
<td>1.2</td>
<td>1.88</td>
</tr>
<tr>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
<td>GAPDH*</td>
<td>1.13</td>
<td>1.89</td>
</tr>
<tr>
<td>Ribosomal protein L8</td>
<td>RPL8*</td>
<td>1.68</td>
<td>2.18</td>
</tr>
<tr>
<td>Ribosomal protein S18</td>
<td>RPS18*</td>
<td>4.32</td>
<td>2.03</td>
</tr>
<tr>
<td>TATA Box binding protein</td>
<td>TBP*</td>
<td>1.19</td>
<td>2.19</td>
</tr>
<tr>
<td>Succinate dehydrogenase subcomplex unit A</td>
<td>SDHA*</td>
<td>5.1</td>
<td>13.36</td>
</tr>
<tr>
<td>Adenosine deaminase</td>
<td>ADA</td>
<td>2.13</td>
<td>2.00</td>
</tr>
<tr>
<td>Calmodulin 1</td>
<td>CALM1</td>
<td>2.83</td>
<td>4.8</td>
</tr>
<tr>
<td>Calmodulin 3</td>
<td>CALM3</td>
<td>1.93</td>
<td>2.26</td>
</tr>
<tr>
<td>Death factor CD95</td>
<td>DFCD95</td>
<td>7.39</td>
<td>17.51</td>
</tr>
<tr>
<td>Defender against cell death 1</td>
<td>DAD1</td>
<td>4.47</td>
<td>5.86</td>
</tr>
<tr>
<td>Hypoxia inducible factor 1A</td>
<td>HIF1A</td>
<td>10.16</td>
<td>25.88</td>
</tr>
<tr>
<td>Lactate dehydrogenase D</td>
<td>LDHD</td>
<td>3.87</td>
<td>6.9</td>
</tr>
<tr>
<td>Malate dehydrogenase</td>
<td>MDH</td>
<td>4.34</td>
<td>8.9</td>
</tr>
<tr>
<td>Obscurin</td>
<td>OBSCN</td>
<td>41.8</td>
<td>17.2</td>
</tr>
<tr>
<td>Ornithine decarboxylase antizyme 2</td>
<td>OAZ1</td>
<td>3.36</td>
<td>5.76</td>
</tr>
<tr>
<td>Programmed cell death 2</td>
<td>PDCD2</td>
<td>19.86</td>
<td>4.77</td>
</tr>
<tr>
<td>Spermidine synthase</td>
<td>SPDSY*</td>
<td>8</td>
<td>3.7</td>
</tr>
</tbody>
</table>
MEANDERING THROUGH THE WORLD OF VIROLOGY: PATHOGENESIS OF BOID INCLUSION BODY DISEASE

Boid inclusion body disease (BIBD) is a disease of snakes from the boid (constrictor) family, which encompasses the python, boa and anaconda. The disease has been discovered in several boid snakes including the boa constrictor (*Boa constrictor*), green anaconda (*Eunectes murinus*), Haitian boa (*Epicrates striatus*), ringed tree boa (*Corallus annulatus*), garden tree boa (*Corallus hortulanus*), Burmese python (*Python molurus*), reticulated python (*Python reticulatus*), ball python (*Python regius*) and Australian python (*Morelia spilota variegata and Morelia spilota spilota*) (Ilyasu, 2016). Colloquially, the disease is coined as the “Twister” due to the failure of the affected snakes to right themselves. The affected snakes may twirl in a vertical position or their bodies may become abnormally twisted.

Until recently, retroviruses and paramyxoviruses have widely been suspected as the causative agents as they were frequently isolated from tissue samples of positive snakes, a claim that was later discountenanced, as these families of viruses were later recognized as being endogenous to these snakes and were also frequently isolated from genome sequences of negative snakes as well (Chang and Jacobson, 2010). Most recently however, two novel arenavirus genomes were detected while another two were isolated from tissues of snakes histologically diagnosed as being positive for the disease and have been confirmed to be the causative agents (Ilyasu et al., 2015a). This new development increased the research interest on the disease investigation as all regions of the world had reported the detection of arenavirus in snakes with BIBD, except South East Asia and Asia Pacific.
The clinical signs are often variable, with regurgitation commonly observed as the first indication of the disease, followed by anorexia. The affected snakes may show central nervous system disorders, such as head tremor and opisthotonus, commonly observed as twisting (Figure 12). Dysecdysis or abnormal skin shedding frequently occurs as a result of the partial paralysis of the posterior half of the snake (Chang and Jacobson, 2010).

Figure 12 Photographs of BIBD infected boids. (A) An albino python, (B) reticulated python and (C) green tree boa exhibit nervous dysfunction giving rise to the classical clinical signs of twister. (D) Close-up view of a reticulated python with abraded-like skin lesions due to dysecdysis.

Death may occur from secondary bacterial, fungal and protozoan infections. Other non-specific clinical signs include encephalitis, pneumonia, hepatitis, enteritis and osteomyelitis. Both the clinical manifestations and the disease progression differ
in boas and pythons, where while the disease can run an acute or chronic course in some affected species, boas die within weeks or months with less frequent manifestation of nervous signs, or become asymptomatic carriers. Pythons on the other hand were shown to suffer mostly from an acute form of the disease, with an overt clinical manifestation of a severe fatal nervous involvement (Ilyasu et al., 2015; Ilyasu, 2016).

Until recently, the most rapid diagnostic technique for BIBD was through the detection of intracytoplasmic inclusion bodies in the peripheral leucocytes, which was considered the gold standard for the diagnosis of BIBD. Biopsy samples from organs such as the liver, kidney and spleen often proved valuable for early and successful detection of inclusion bodies (Figure 13) (Ilyasu, 2016). The inclusion bodies were found to be made up of a protein that has a molecular weight of 68kDa (Wozniak et al., 2000; Ilyasu et al., 2015a). As the pathogenesis is unclear to scientists, the disease remains a mystery, hence there is no drug for its treatment and no vaccine available for its prevention (Chang and Jacobson, 2010; Ilyasu, 2016). Evidence available suggests that the disease can be transmitted among snakes, but the exact modes of transmission are still not understood. However, the blood sucking snake mite *Ophionyssus natricis* have frequently been associated with snake collections during outbreaks and may therefore be acting as a vector (Chang and Jacobson, 2010).
In Malaysia, the first suspected case was reported in 2008 at a large snake enclosure. Although at that time it was believed to be caused by a retrovirus, these reported cases were the first to be reported in South East Asia and Asia Pacific and were presented as a case of retrovirus infection (Noordin et al., 2008).

Later, further microscopic and ultrastructural investigations along with virus isolation with in vitro and in vivo model studies were mounted to explain the outbreak and possible pathogenesis (Ibrahim, 2013).

Ibrahim (2013) was able to establish the presence of eosinophilic intracytoplasmic inclusion bodies in the tissues of the infected snakes. Similarly, the cytopathologic effect of the virus was shown in Vero and rat embryonic fibroblast cell lines [REF] (Figure 14), characterized by vacuolations, cell sloughing and complete destruction of cellular monolayers.
Meandering Through the Superb Scientific World of Pathology

Figure 14 Photomicrograph of the REF and Vero cells inoculated with the reptarenavirus. Evidence of viral cytopathic effect in REF and Vero cells infected with reptarenavirus UPM/MY is seen as cell rounding in REF cells at 48 hours and 72 hours in Vero cells.

In the laboratory animal model (mice), evidence of organ and tissue pathology was observed after inoculation of virus suspensions from infected pythons and boas (Figure 15). These include degeneration and necrosis in the kidneys; congestion, interstitial pneumonia and emphysema in the lungs; and congestion and edema in the brain. Hepatocytic degeneration and necrosis with reactive germinal centers were also seen in the spleen. Haematological changes induced by the virus include leucopenia, neutropaenia and thrombocytopaenia during the sub-chronic course. Furthermore, the virus was successfully re-isolated in cell cultures from the organs of infected mice (Ibrahim, 2013) proving the Koch postulate that the incriminating agent was a virus.

Due to the dearth of knowledge on the pathogenicity of the virus, our laboratory attempted to device a simple and cheap means of preventing snakes from being infected. Since there is currently
Noordin Mohamed Mustapha

no remedy for the virus, the effects of antioxidant compounds such as resveratrol and ascorbic acid were investigated on the viral pathogenesis in cell lines and mice animal model.

Ascorbic acid is a commonly available vitamin present in fruits, and has shown remarkable antioxidant effects (Abba et al., 2015a). Resveratrol is a stilbene derived from grapes and has also shown good antioxidant and antiviral effects against human and animal viruses (Abba et al., 2015b).

Figure 15 Photomicrograph of selected tissues following infection of mice with reptarenavirus: (a) Spleen showing depletion of the white pulp (WP) and fluid filled pockets (arrows) in the periarteriolar lymphoid sheath; (b) The kidney showing interstitial lymphocytic (L) infiltration; (c) The lungs showing mainly congestion (C) and interstitial lymphocytic infiltration (L); and (d) The brain showing a rather hypercellular appearance due to gliosis (G) in the cerebral cortex with the presence of red neurons indicating neuronal death (D) (H&E, X 200).
Investigation of the effects of these two compounds against the virus in Vero cells showed amelioration of oxidative stress by modulating oxidant and (Figure 16) enzyme levels (glutathione, hydrogen peroxide and lipid peroxidase) in treated cells when compared to the untreated cells. This showed that the compounds exhibited antioxidant effects against the virus (Abba et al., 2014). In the mice model, groups treated with resveratrol after viral infection showed less severe lesions in the lungs, liver and spleen (Figures 17-18), when compared to the untreated groups (Abba et al., 2015c).

At the same time, due to being puzzled by the intracytoplasmic inclusions, an investigation on the association between the virus and heat shock protein expression in infected snakes and the pathogenesis of the virus in chicken embryos was also conducted. The virus was shown to induce expression of heat shock protein in infected snakes (Ilyasu et al., 2015b). In addition, reptarenavirus also induced pathological lesions such as vacuolation, congestion and inclusion body formation in chicken embryos (Figure 19) which were observed in the infected embryos (Ilyasu et al., 2016). In vitro viral re-isolation in cell culture showed cytopathic effects characteristic of reptarenavirus, as previously reported by Omar (2013) and Abba et al. (2016).

In 2012, based on new evidence from next generation sequencing technology, the etiological agent of the disease was revised as being a reptarenavirus belonging to the family Arenaviridae. Based on this information, viral RNA of cases isolated from Malaysia was amplified using RT-PCR with primers specific for the L-segment of reptarenavirus. Sanger sequencing identified four closely associated reptarenavirus species from 15 (37.5%) of the total samples tested, and these were named: reptarenavirus UPM-MY
01, 02, 03 and 04. These isolates were phylogenetically closely related to the University Helsinki virus (UHV), Boa Arenavirus NL (ROUTV) (BAV) and unidentified reptarenavirus L20 (URAV-L20). Comparison of deduced amino acid sequences further confirmed the identities to L-protein of UHV, L-polymerase of BAV and RNA-dependent RNA polymerase of URAV-L20 (Figure 20) from Finland and the Netherlands (Abba et al., 2016). This is the first report of successful identification of the virus in South East Asia and Asia Pacific combined.

Figure 16 Bar chart of selected anti-oxidant and peroxidation status of Vero cells incubated with reptarenavirus at 24, 72 and 120 hours post-inoculation. The data indicates that oxidative stress may play a role in the pathogenesis of BIBD.
Figure 17 Photomicrograph of the liver of mice infected with reptarenavirus, with and without resveratrol supplementation, at 24, 72 and 120 hours post-infection. Histological changes of degeneration in the hepatocytes and Kupffer cells were milder in the resveratrol supplemented group (H&E, X 400).

Figure 18 Photomicrograph of the lung of mice infected with reptarenavirus with and without resveratrol supplementation at 24, 72 and 120 hours post-infection. Microscopic appearance of viral infection composed of congestion and interstitial pneumonia were much milder in the resveratrol supplemented group. (H&E, X 100).
Noordin Mohamed Mustapha

Figure 19 Photomicrograph of tissue from infected chicken embryo showing the presence of eosinophilic inclusion bodies in the cardiomyocyte (A) and liver (B). Hepatocytic vacuolations are possibly non-pathologic as this is a tissue of an embryo (H&E, X 200).

Figure 20 Phylogenetic tree of reptarenavirus UPM-MY01A-04A L-polymerase (partial) with other similar sequences from the GenBank. The tree was constructed using Geneious Software version 9.0.4(www.geneious.com) using the Jukes-Cantor, neighbor joining algorithm at 1,000 bootstrap replicates and a support threshold of 50%.
MEANDERING THROUGH WORLD OF POLLUTED AIR: TRANSBOUNDARY HAZE

Transboundary movement of atmospheric pollutants has international policy, economic, human health and environmental ramifications. Atmospheric pollutants are of particular concern since air masses flow freely across borders, leaving the geographic and political jurisdiction of the originating country and becoming the responsibility of another. Additionally, the transport of air pollutants is a significant contributor to acid rain, poor visibility, climate change and bioaccumulation of toxins in remote areas. For example, wind blown desert dust and forest fire smoke cross international borders and increase particulate matter concentrations to levels that may exceed regulatory standards and harm human health. Thus, air pollutant monitoring is an important issue for both human and environmental health on a global scale (Pope, 1996; Noordin et al., 2004).

Particulate matter (PM) has impacts on human health by reducing lung function and is of particular concern to those with an existing compromised respiratory function such as an asthmatic, children and the elderly (Wang et al., 2007a; 2007b; 2007c). Generally, PM classified as less than 10 microns, is considered inhalable, while fine PM of less than 2.5 microns, has the most impact on human health (Kim and Kang, 1997; Wang et al., 2007a; 2007b; 2007c). Particulate matter is a heterogeneous classification of liquid and solid aerosols that can remain in the atmosphere or gas stream. The PM\textsubscript{10} is a particle with an aerodynamic diameter less than or equal to 10\textmu m while PM\textsubscript{2.5} has an aerodynamic diameter less than 2.5\textmu m. Particulate matter represented the major pollutant in the transmitted biomass burning emissions in Malaysia, Singapore, Brunei and Thailand (Heil, 1988).
Health effects do not only depend on the particulates as such, but also on the composition of toxic compounds adsorbed on their surface. Among these compounds are polycyclic aromatic hydrocarbons (PAH) which are formed during the combustion processes of organic material with insufficient oxygen supply (Heil, 1998). The PAH comprise of more than 100 different multi-ringed compounds of which many are known to be carcinogenic (Heil, 1998).

Increased concentrations of fine particles in the ambient air are associated with substantial health impacts, such as, acutely and chronically decreased lung function (Heil, 1998; Wang et al., 2007a; 2007b; 2007c). Accumulation of particles increases the likelihood of chronic obstructive pulmonary diseases, permanent decrease of the lung function, asthmatic symptoms and cardiovascular disease (Anon, 1998; Wang et al., 2007a; 2007b; 2007c). The acute health hazards caused by the interactions between deposited particles and the respiratory system range from acute respiratory symptoms and illness, including bronchitis, asthma, pneumonia and upper respiratory infection, impaired lung function, hospitalization for respiratory and cardiac disease, to increases in mortality (Wang et al., 2007a; 2007b; 2007c).

While breathing, particles are retained according to their size within the respiratory system. Larger particles are deposited in the upper respiratory tract, while smaller particles may penetrate deeper into the lungs, where they are retained for a longer period (Latif et al., 2009; 2010b). Inhalable particles with diameter greater than 10μm are predominately deposited in the nose, the mouth-throat area and in the larynx (Noordin et al., 2004). The resident time of the deposited particles in these areas is several hours. Particles less than 10μm in diameter may advance until the thoracic respiratory system and is mainly deposited in the trachea-bronchial area, from
where they are removed within up to 24 hours (Latif et al., 2009; 2010b). Finer particles of less than 3μm penetrate the alveolar area. The deposition probability might amount up to 60%. The elimination process of particles, which have been deposited in the alveolar area, takes between days and years (Verein, 1997; Anon, 1998; Latif et al., 2009; 2010b).

The PAH are ubiquitous products of incomplete combustion and have been found adsorbed on the particulate emissions from wood fires, pulverized coal combustion, waste incineration and laboratory scale flames (Benner et al., 1990). They consist of carbon and hydrogen and can be conceived as consisting of fused rings of benzene and belong to the group of polycyclic aromatic compounds (PAC). The major concern on the presence of PAH and other PAC in the environment is caused by the fact that several of them are carcinogens and present in polluted air (Finlayson-Pitts and Pitts, 1986; Sanaz et al., 2010).

Out of a total of 11 PAH, eight were collected before, during and after the 1997 Malaysian haze episode. Eight of those have been studied in animal models at our laboratory. The eight PAHs were phenanthrene, flouranthene, pyrene, chrysene, benzo(a) pyrene, benzo(e)pyrene, indeno(1,2,3-cd)pyrene and benzo(ghi)perylene (Noordin et al., 2004; Movassagh et al., 2006; Sanaz et al., 2010; Latif et al., 2009; 2010, 2011a; 2011b). In general, almost all of these PAHs produced similar acute and chronic effects when intratracheally administered. In this review, the results are represented by findings seen in experiments using phenanthrene, flouranthene, benz[a]anthracene and benzo(a) pyrene (Noordin et al., 2004; Movassagh et al., 2006; Sanaz et al., 2010; Latif et al., 2009; 2010, 2011a, 2011b). Owing to the fact that once an episode of haze happens, there is nothing much we can do for the environment, there should however be ways and means of minimizing the effects on
the body when exposed to haze, for example via supplementation of herbal remedies. Thus, this triggered us to study the efficacy of readily available, cheap, non-toxic and rather specific antidotes to air pollutants (PM) such as, *Allium sativum* (garlic) and *Nigella sativa* (black seed).

Known scientifically as *Allium sativum*, garlic contains more than 100 biologically useful chemicals, including alliin, alliinase, allicin, S-allylcysteine, diallyl sulfide and allyl methyl trisulfide (Bree, 1994). The healthful properties of garlic are legion and have been identified and validated by hard empirical science in over a thousand scientific reports in the last decade. Garlic is uniquely the richest dietary source of healthful sulphur compounds, plus organic selenium as well as being one of the best sources of organic germanium, besides an impressive array of other essential nutrients and active health-promoting phytochemicals. Thus, this study is aimed at assessing the efficacy of garlic in alleviating PAHs lung induced–injury.

On the other hand, *Nigella sativa* (black seed) is a widely used medicinal herb found worldwide. It is native to Southern Europe, North Africa and Southwest Asia and it is cultivated in many countries in the middle-east, south Europe, India, Pakistan, Syria, Turkey and Saudi Arabia. The seeds contain a fatty oil rich in unsaturated fatty acids, mainly linoleic acid (50-60%), oleic acid (20%), eicodadienoic acid (3%) and dihomolinoleic acid (10%). Black seeds and their oil have a long history of folklore usage in Indian and Arabian civilizations, as food and medicine.

Following one of the worst haze episodes affecting Malaysia, in 1997, several studies were conducted to assess the effects of exposure to haze in animal models (rats and chickens). It encompassed both the acute and chronic effects of selected PAHs, with emphasis on determining sensitive and reliable markers of
injuries induced by PAHs apart from the arising pathologies in the exposed lungs with and without garlic (Movassagh et al., 2007; Sanaz et al., 2010) or black seed supplementation (Latif et al., 2009; 2010, 2011a; 2011b; Mazlina et al., 2011).

The acute exposure studies were performed to determine the presence of apoptosis and proteases activity in the lungs of rats or chickens following treatment with a PAH, either singly or in combination. Rats or chickens not receiving any treatment served as controls while those administered with the tested PAH, instilled intratracheally, were treated with doses of the inhaled PAH based on their concentrations during the peak haze episode of 1997. All the rats or chickens were euthanised at 1, 8 and 24 hours post-instillation (p.i). Apoptosis estimation was made on haematoxylin-eosin stained histopathologic sections, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis and DNA laddering of lung samples. As for protease analyses, total protein content measured by using BSA kit, elastase-like activity and neutrophil elastase activity were performed in the lung lavage collected from the tested animals.

Different phases of apoptosis (Figure 21) were discovered in the pneumocytes and bronchial epithelium of the lung samples of all the PAH-treated rats and chickens. The histopathological (Figure 21) findings showed that there was an increment of apoptotic cells (p<0.05) with advancement of time, especially at 8 and 24 hours p.i. This was also confirmed by TUNEL analysis and DNA laddering (Movassagh et al., 2007; Sanaz et al., 2010; Latif et al., 2009; 2010, 2011a; 2011b; Mazlina et al., 2011). Likewise, initial influx of neutrophils followed by macrophages was seen at 8 and 24 hours p.i., respectively (Figure 22).
Figure 21 Photomicrograph of a rat lung instilled with a PAH 24 hrs p.i. Note the apoptotic cells (arrowheads) are yellowish green and normal cells are red (arrow). [Fluorescein stain (H&E X500)].

Figure 22 Photomicrograph of the lung of a rat treated with a PAH. (A). Lung tissue examined 8 hrs p.i.. Note the presence of numerous neutrophils (arrows) in the interstitium (H&E, X400). (B). Lung tissue examined 24 hrs p.i. depicts the influx of alveolar macrophages characterized by their eccentrically placed, (arrowhead) ovoid (thin arrow) and kidney-shaped nucleus. (H&E, X400).

The obtained data also showed a time-dependent increase in lung lavage total protein content, elastase-like activity and neutrophil elastase activity during acute exposure (Tables 4).
Table 4 The pulmonary lavage concentration of proteases in rats during acute exposure (OD; Mean±Sd).

<table>
<thead>
<tr>
<th>Hrs</th>
<th>Elastase-like</th>
<th>Neutrophil elastase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Cx</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0.01<sup>aA</sup></td>
<td>0.01<sup>aA</sup></td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.36</td>
</tr>
<tr>
<td>F</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0.01<sup>bB</sup></td>
<td>0.01<sup>bB</sup></td>
</tr>
<tr>
<td></td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>0.58</td>
</tr>
<tr>
<td>F+P</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td></td>
<td>0.01<sup>aD</sup></td>
<td>0.01<sup>bD</sup></td>
</tr>
</tbody>
</table>

Values between column bearing the same superscript/s do not differ at (P<0.05),

Values between rows bearing the same superscript/s do not differ at (P<0.05),

F = flouranthene, P = pyrene

The chronic exposure studies were conducted as described in the acute study but for a three month period. However, an assessment was also made on the efficacy of garlic or blackseed as an alternative therapeutic agent against PAH. Rats or chickens were assigned into the control, single PAH, combined PAH, garlic or blackseed alone or with either a single or combined PAH groups. The dose of garlic and blackseed were 80mg/kg body weight/rat/day or 20g/kg diet, respectively.

The outcome demonstrated morphological alterations and growth disorders in pneumocytes and bronchial epithelium of rats from all PAH-treated groups (Figure 23, Table 5) along with marked decrease in macrophage phagocytic activity (Figure 24). The PAH-treated groups also showed dreadful effects in proteases activities, levels of IgG, IgA, alveolar macrophages activities and

□ 40
glutathione-S-transferase in the lung. In contrast, all PAH-treated groups fed with garlic or black seed showed significant improvement in pathological changes, proteases activities, immunology and enzyme activity in the lung (Table 6).

Table 5 The lung lesion scores of rats at necropsy (%; Mean±SD).

<table>
<thead>
<tr>
<th>Group</th>
<th>Neutrophil</th>
<th>Alveolar macrophage</th>
<th>Emphysema</th>
<th>Hyperplasia</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>7.7±1.5A</td>
<td>2.7±0.6A</td>
<td>0.0±0.0A</td>
<td>0.0±0.0A</td>
<td>0.0±0.0A</td>
</tr>
<tr>
<td>G</td>
<td>8.3±0.6A</td>
<td>5.7±1.2A</td>
<td>0.0±0.0A</td>
<td>6.0±1.7A</td>
<td>0.00±0.0A</td>
</tr>
<tr>
<td>F</td>
<td>29.3±0.6B</td>
<td>33.0±2.7B</td>
<td>23.3±5.8B</td>
<td>25.7±0.6C</td>
<td>35.0±0.6B</td>
</tr>
<tr>
<td>F+G</td>
<td>13.7±1.5C</td>
<td>31.3±2.1C</td>
<td>0.0±0.0A</td>
<td>18.3±1.2D</td>
<td>8.7±0.6C</td>
</tr>
<tr>
<td>P</td>
<td>30.0±0.6B</td>
<td>35.0±1.0D</td>
<td>23.3±2.9B</td>
<td>27.0±1.0C</td>
<td>34.7±0.6B</td>
</tr>
<tr>
<td>P+G</td>
<td>11.3±1.5C</td>
<td>34.0±1.7D</td>
<td>0.0±0.0A</td>
<td>17.7±0.6D</td>
<td>9.7±0.6D</td>
</tr>
<tr>
<td>F+P</td>
<td>32.0±3.0B</td>
<td>34.7±0.6D</td>
<td>40.7±1.2C</td>
<td>27.3±2.1C</td>
<td>40.0±0.6E</td>
</tr>
<tr>
<td>F+P+G</td>
<td>12.7±2.3C</td>
<td>34.3±0.6D</td>
<td>0.0±0.0A</td>
<td>20.0±2.7D</td>
<td>10.0±0.6D</td>
</tr>
</tbody>
</table>

A,B,C,D,E Values between column bearing the same superscript/s do not differ at (P<0.05),
G= garlic, F = flouranthene, P = pyrene
Table 6 The pulmonary lavage concentration of proteases activity in rats during chronic exposure (OD; Mean±SD).

<table>
<thead>
<tr>
<th>Group</th>
<th>Total protein</th>
<th>Elastase-like</th>
<th>Neutrophil elastase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx</td>
<td>0.3±0.04^A</td>
<td>0.06±0.00^A</td>
<td>0.0007±0.00032^A</td>
</tr>
<tr>
<td>G</td>
<td>0.3±0.03^A</td>
<td>0.04±0.00^A</td>
<td>0.0012±0.00055^A</td>
</tr>
<tr>
<td>F</td>
<td>1.7±0.14^B</td>
<td>0.3±0.01^B</td>
<td>0.0089±0.00400^B</td>
</tr>
<tr>
<td>F+G</td>
<td>0.4±0.10^E</td>
<td>0.05±0.00^A</td>
<td>0.0010±0.00045^E</td>
</tr>
<tr>
<td>P</td>
<td>1.7±0.14^BC</td>
<td>0.3±0.01^BC</td>
<td>0.0084±0.00374^C</td>
</tr>
<tr>
<td>P+G</td>
<td>0.4±0.03^EF</td>
<td>0.1±0.00^F</td>
<td>0.0013±0.00060^F</td>
</tr>
<tr>
<td>F+P</td>
<td>2.9±0.015^D</td>
<td>0.6±0.02^D</td>
<td>0.0084±0.00374^D</td>
</tr>
<tr>
<td>F+P+G</td>
<td>0.4±0.01^EG</td>
<td>0.1±0.01^E</td>
<td>0.0009±0.00040^G</td>
</tr>
</tbody>
</table>

^A,B,C,D,E Values between column bearing the same superscript/s do not differ at (P<0.05);
G = garlic, F = flouranthene, P = pyrene

Concisely, the environmental hazard of PAH, either singly or in combination, to the lungs of rats and chickens as target organs, triggers deleterious changes either by acute or chronic exposure while garlic and black seed have tremendous potential in alleviating the chronic effects of PAH. The efficacy of garlic and black seed in mitigating the toxic effects of PAH is believed to be mediated through the anti-oxidant effects and suppression of PAH converting enzymes (Movassagh et al., 2007; Sanaz et al., 2010; Latif et al., 2009; 2010, 2011a; 2011b; Mazlina et al., 2011).
Figure 23 Photomicrograph of lung of rat given a PAH necropsied 90 days post-instillation. A. Note emphysema denoted by marked dilation of alveolar spaces due to rupture of its membrane (H&E, X200). B. There is an increase in the thickness of alveolar wall due to epithelisation (H&E, X400). C. Aggregation of macrophages of which some are foamy (H&E, X600). D. In addition to the thickening of the alveolar septa there is the presence of cells with large eosinophilic cytoplasm resembling an “oat-cell carcinoma” (H&E, X200).

Figure 24 Photomicrograph of lung lavage of a rat instilled with a PAH necropsied at 90 days post-instillation. Note the alveolar macrophages (arrow) with cytoplasmic phagocytosed bacteria (arrowhead) (AO chemiluminescence assay). A marked reduction in the killing activity of alveolar macrophages is seen in lungs exposed to PAH. However, supplementation with either garlic or black seed improved the performance of the macrophages (AO, X500).
MEANDERING THROUGH THE WORLD OF EMERGING AND RE-EMERGING DISEASES: TRANSBOUNDARY INFECTION

The complexity of zoonotic and emerging diseases warrants effective preparedness in handling an outbreak. The factors that contribute to their occurrences include microbial, environmental, host and population dynamics, as well as, ease of worldwide travel and breakdown in control measures. Moreover, the changes in transmission dynamics bring about closer and more frequent contact with zoonotic pathogens, which are involved in 75% of the outbreaks. Thus, with respect to the changes observed, four major areas need to be explored, which are rapid detection, improved surveillance, good early warning systems and appropriate response. Investigation on emergent pandemic infection threats and pathogen discovery are also emphasised as the pro-active phase in predicting and controlling/eradicating an outbreak of a zoonotic and/or emerging disease.

Malaysia, being connected to its south-east Asian neighbours by land and sea, remains vulnerable to the entrance of transboundary emerging or re-emerging diseases (Noordin, 2013; 2015; 2016; Noordin et al., 2010). The threat does not stop here since aerial transmission of infectious agents can reach any nation through anthropogenic, climatic and vehicular means. Apart from the Nipah virus encephalitis and avian flu, coenuriasis (Noordin et al., 2010), Q fever, caused by *Coxiella burnetii* is a worldwide zoonosis of public health concern prevalent in parts of New Zealand and Antarctica and now, Malaysia (Norina et al., 2011).

The remarkable phenomenon of caprine Q fever strain, traceable to be infectious in goats bred locally in Malaysia, was very rarely considered when analyzing the DVS policies’ directions. Effort
to embark on research in this matter is timely since Malaysia has gone on board to intensify a livestock nucleus project involving the production of high quality imported embryos.

Suprisingly, after 56 years there was a “first” reported outbreak of re-emergence of Q fever in goats in Penang, affecting farmers, veterinarians and members of the Department of Veterinary Services (Norina et al., 2008).

A seroprevalence study (November 2007 to May 2008) on goat flocks in Peninsular Malaysia (Norina et al., 2008) showed that *C. burnetii* infection were widespread in its goat flocks (reactor rate of 3.52-40.53%). Nevertheless, there was also no significant difference between breed reactor rates (relative risk, 1.11; 95% CI, 0.71-1.73). This suggests that *C. burnetii* infections may have been in Malaysia prior to the importation of the Boer goats. It is believed that underdeveloped policies of importation, quarantine stations and screening of tropical diseases could have contributed to such outbreaks in humans and animals (Norina et al., 2008).

Generally, Q fever infection occurs through inhalation of contaminated aerosols leading to subclinical disease that has been associated with late abortions, stillbirth, delivery of weak offsprings and also infertility.

Rapid diagnosis of the aetiological agent of caprine abortion in Malaysia is of great importance in terms of control and prevention. Routine diagnosis of Q fever in Malaysia is usually based on the detection of specific antibodies in the adult population by ELISA tests which at times may give false negative results (Norina et al., 2011). In the act of assisting the Department of Veterinary Services in their control and prevention of diseases programme, a study was done to generate a set of databases and to map out areas of Q fever infection in Malaysia.
Meandering Through the Superb Scientific World of Pathology

A total of 2266 sera taken from 108 goat farms for surveillance involving six states revealed that *C. burnetii* is widespread irrespective of breeds in Peninsular Malaysia (Figure 25; Norina et al., 2011).

Additionally, the risk analysis is in agreement that the female is prone to a higher risk of getting Q fever (95%CI, 1.064–1.206). It believed that sex hormones play a role in pathogenesis of Q fever infection. Age also appears to be a risk factor for Q fever where goats of less than 2 years of age bear a much higher risk compared to older animals (1.13 95%CI, 0.677–1.89). Haemogram changes of a high haemoglobin concentration, leukocytosis and thrombocytosis are indicative of Q fever infection in goats.

![Figure 25](image_url) Map indicating the prevalence of Q fever in Peninsular Malaysia being highest in the Klang Valley and lowest in Selangor.
Noordin Mohamed Mustapha

Owing to shedding of *C. burnetii* in amniotic fluids, placenta, faeces, urine and milk, a total of 150 carcasses from 5 infected goat farms with a history of abortion storm in the northern zone were necropsied. Gross findings revealed necrotic placentitis with diffused white foci creamy exudates at the edges of the cotyledons and in the intercotyledonary areas (Figure 26). The organism can be demonstrated with the use of Giemsa and Machiavello stains which can be conducted at any regional laboratory (Figure 26).

Since the organism is intracellular in nature and not all regional laboratories are equipped with tissue culture or IHC facilities, inoculating infected tissues into embryonated eggs is a diagnostic option. The yolk sac of the SPF embryonated chicken egg at 10-day post-inoculation can then be stained with Machiavello and Gimenez stains (Figure 27). The results can be easily interpreted as the positive results stand-out clearly from the surrounding tissue. Histopathologically, necrotic placentitis, interstitial pneumonia, hepatitis and nephritis were seen in a majority of cases (Figure 28). Acute cases yielded lesions conforming to doughnut granuloma while those of the chronic form exhibited chronic inflammation. Out of the total suspected cases, 152 (77.2%) were confirmed as being positive for Q-fever, based on immunohistochemistry (IHC) analysis. Our study has demonstrated pertinent lesions of acute and chronic forms of Q-fever which is beneficial to laboratories without IHC facilities. Furthermore, the study has also enabled the correct submission of samples from the field as there is a good correlation between the H&E and IHC stained placenta, lung and liver (Figure 29).

Thirty placentas and umbilical cords of two foetuses stained with the Giemsa and Machiavello (MAC) staining revealed hazy bluish structures within the cytoplasm of trophoblasts that contained small, red coccobacilli organisms.
Figure 26 Photographs and photomicrographs of tissues obtained post mortem from affected does. A. Foetus in affected does remain without gross lesions as opposed to that in cases of brucellosis. B. Diffused white foci along the umbilical cord is a prominent feature of caprine Q fever. C & D. Another common feature seen in cases of caprine Q fever is whitish necrotic foci on the cotyledon and caruncle of the placentome, respectively. E & F. Photomicrographs demonstrating cyst-like trophoblast contain bluish cocobacilli organisms (arrows) on direct impression smear of the placenta (Giemsa, X1000) and red cocobacilli organisms with bluish background on direct impression smear of the foetus liver (Machievello, X1000), respectively.

The placentas were inoculated into 7-day-old SPF embryonated chicken eggs which led to a cloudy chorion with small white foci attached to the chorionic membrane, collapse of blood vessels,
diffused haemorrhage and corneal opacity of the embryo. Harvested yolk sac stained with Machiavello and Gimenez stains showed the presence of numerous red coccobacilli *C. burnetii* attached to the yolk sac (Figure 27). This finding was later confirmed by immunohistochemistry (IHC) in all six tissues (100%) where positive brownish granules appeared against a green background.

The PCR is a much safer and useful method for detection and diagnosis of *C. burnetii* by targeting transposon-like repetitive regions but is off-limits to most regional laboratories. At present, PCR techniques are useful as diagnostic tools for detection of *C. burnetii* in caprine aborted foetuses and in caprine genital swabs. Four, three and four frozen placental, fresh placental and fresh vaginal swabs, respectively, from does with a history of abortion were positive on PCR for *Coxiella burnetii*.

The methods developed in this study provide a basis for confirming a case of Q fever at the regional laboratory level. Alternatively, more comprehensive understanding and awareness on the evolution of Q fever will hopefully lead to the development of improved epidemiological and diagnostic tools contributing to the existing disease control programmes in Malaysia in the future.

![Photomicrograph demonstrating, at a dilution of 10⁻⁹ on day 10 post-inoculation, pink coccobacilli of *Coxiella burnetii* (arrow) on direct impression smear on the yolk sac (X1000; Machiavello stain);(B) while Gimenez stain revealed pink coccobacilli of *Coxiella burnetii* with green background (X1000; Gimenez stain)](image)
Figure 28 Photomicrographs of liver, lung and kidney from infected does. (A). Liver shows the typical feature of what is known as a doughnut granuloma (H&E, X 200). (B). The IHC of the infected liver demonstrates the diffusely distributed positive areas within the liver parenchyma. (C). The lung with a rather bizarre feature of bacterial infection conforming to interstitial pneumonia (H&E, X200). (D). The IHC of the lung shows the presence of positive areas within the alveoli. (E). Immunopositive reaction in the kidneys depict predilection sites of tubules. Both distributions of immunopositive areas in the lung (D) and kidneys (E) explain the route of excretion of the bacteria into the environment.
Figure 29 Histogram comparing the specificity and sensitivity of the IHC used against that of H&E stained lesions. Tissues to be collected in cases of Q fever are from the placenta, lung and liver.

MEANDERING THROUGH THE WORLD OF NUTRACEUTICALS: LOCAL HERBS WITH PHARMACEUTICAL POTENTIAL

The booming herbal industry has been identified as a source of national economic growth of the Entry Point Projects under the Agricultural National Key Economic Areas in the Economic Transformation Programme. The herbal industry is estimated to reach a market value of USD115 billion by the year 2020, with a 9.1% compound annual growth rate (CAGR), in the Asia-Pacific region. Malaysia expects its herbal industry to expand by 15% a year, from RM7 billion in 2010 to around RM29 billion by 2020 (Ahmad et al., 2015). This flourishing growth rate prediction for this industry is due to a changing mind set and awareness on alternative health care and disease prevention (Noordin, 2008; Ahmad and Othman, 2015).

Owing to the high incidence of cholesterol-induced cardiovascular diseases, particularly atherosclerosis, a study was designed to investigate the preventive and therapeutic efficacies of dietary zerumbone (ZER) supplementation on the formation and
development of atherosclerosis in rabbits fed with a high cholesterol diet. *Zingiber zerumbet* (Linnaeus) Smith,(ZER) belonging to the family *Zingiberaceae*, an edible ginger originating in South-East Asia (Ruslay et al., 2007), is an effective antioxidant in suppressing the generation of free radicals (Murakami et al., 2002) where this is especially important because oxidative stress plays a key role in the process of atherogenesis (Schulze et al., 2006). Furthermore, ZER attenuates free radical generation by chronic inflammatory cells (macrophages and lymphocytes) as an antioxidant, cancer-preventive agent with a pivotal role in fatty streaks formation, plaque accumulation and in early lesion development (Song et al., 2001; Galkina & Ley, 2009).

New Zealand White rabbits used as models were divided randomly into two experimental set-ups executed eight weeks apart. The first set-up was designed to investigate the prophylactic efficacy of ZER in preventing early developed atheromatous lesions while the second was to assess the therapeutic efficacy of ZER. The latter set-up was to assess the efficacy of ZER in reducing atherosclerotic lesion progression and establishment. Assessment of both efficacies was based on clinical outcome, selected biochemical parameters and pathology (gross, microscopic including histochemistry, immunohistochemistry and ultrastructure).

Generally, tissues of rabbits fed a high cholesterol diet were pale resulting from the excess deposition of cholesterol into the tissues (Figure 30). Almost all the rabbits fed the high cholesterol diet developed myocardial infarction at the apex of the heart (Figure 31).

Sudanophilia, histopathological, and ultrastructural changes showed pronounced reduction in the plaque size in ZER-medicated aortas (Figures 32-36). On the other hand, dietary supplementation of ZER for almost 10 weeks as a prophylactic measure indicated substantial decrease in lipid profile values, and similarly, plaque size,
in comparison with that in the high-cholesterol non-supplemented rabbits (Figures 32). Furthermore, the results of oxidative stress and antioxidant biomarker evaluation indicated that ZER is a potent antioxidant in suppressing the generation of free radicals, in terms of atherosclerosis prevention and treatment. Zerumbone significantly reduced the value of malondialdehyde and augmented the value of superoxide dismutase. In conclusion, the data indicated that dietary supplementation of ZER at doses of 8, 16 and 20 mg/kg alone as a prophylactic measure, and as a supplementary treatment with simvastatin, significantly reduced early plague formation, development, and establishment, via significant reduction in the serum lipid profile, together with suppression of oxidative damage, and therefore alleviated atherosclerosis lesions.

Many other herbs with potential pharmaceutical properties have been investigated, in most cases initially based on their antioxidant properties (Noordin, 2008). Due to spatial limitations, worth mentioning here are our other indirect research pertaining to nutraceuticals which involves the use of pathology, which include those related to ageing (Imilia et al., 2002), anti-diabetic (Matanjun et al., 2008; 2009; Hasliza et al., 2011; Mohamed et al., 2011; Shukri et al., 2010; 2011), anti-hypertensive (Juliana et al., 2007; Jaffri et al., 2011a; 2011b; 2011c), anti-asthmatic (Abu-Bakar et al., 2015), anti-inflammatory (Abu Bakar et al., 2015; Matanjun et al., 2008; 2009; 2011; Manaf et al., 2016), anti-hypercholesterolaemia (Tee et al., 2002; Irene et al., 2003; Mohamed et al., 2003; Choong et al., 2007; Matanjun et al., 2011; Khairullah et al., 2014; Roslina Tan et al., 2011) anti-osteoporosis (Baksh et al., 2013) and anti-cancer (Choong et al., 2007; 2008; Matanjun et al., 2008; 2009; 2011; Namvar et al., 2009; 2012; Tong et al., 2008; 2009; Keong et al., 2010; Dina et al., 2011; Huthefya et al., 2011; Khairullah et al., 2014; Lim et al., 2016a; 2016b; Nurul et al., 2016).
Figure 30 Photograph of the liver and kidneys of rabbits at the end of the trial. Both organs appear pale in the rats receiving a high cholesterol diet (HCD).

Figure 31 Photograph of the liver and heart of rabbits fed a high cholesterol diet at the end of the experiment. Note that most of the organs are pale where pale areas at the apex of the heart shows the development of myocardial infarction, similar to ischaemic heart disease (IHD)-like lesions.
Figure 32 Photograph of the Sudan IV–stained thoracic aorta of rabbits from the control (CN), high cholesterol diet (HCD) and graded doses of zerumbone (ZPI, ZPII and ZPIII) groups at post mortem. Note marked Sudan IV staining reaction in the HCD group and the lesser intense staining with increasing dose of zerumbone (D to E).

Figure 33 Photomicrograph of thoracic aorta of the rabbits from the control (CN), high cholesterol diet (HCD) and graded doses of zerumbone (ZPI, ZPII and ZPIII) groups at post mortem. The establishment of atherosclerosis is effectively diminished by zerumbone, especially at higher doses. (H&E, X200)
Figure 34 Photomicrograph of thoracic aortas of rabbits immunohistochemically stained with RAM-11 antibody from the control (CN), high cholesterol diet (HCD) and graded doses of zerumbone (ZPI, ZPII and ZPIII) groups at post mortem. A significant reduction tunica media RAM11 biomarker staining is displayed in rabbits receiving zerumbone. Obviously, there is no reaction in the muscularis layer (M), P= intimal plaque; L: Lumen, Ad: Adventitia. (100X).
Figure 35 Photomicrograph of thoracic aortas from HCD, ZPI, ZPII and ZPIII represent immunofluorescent staining with RAM-11 antibody. Aortas in ZPI, II and III groups demonstrate significant reduction in the macrophage-derived foam cells within the tunica intima compared to the HCD group, indicated by low intensity of greenish-fluorochrome immunopositive RAM-11 cells in the intimal plaque. L: Lumen; P: Plaque; M: Media; Ad: Adventitia. Scale bars: 200 μm
CONCLUDING REMARKS

It appears that pathology as a discipline in medicine can form an integral part of research excellence. Commencing from verifying the development of a functional model to assessment of progression of the model towards its targeted objective and the assessment of the efficacy of a new therapy can be achieved via pathology. This short review has at its best shown how pathology fits into most other branches of medicinal research in exploring the intrapolated postulations. However, this is just one aspect of the usage of pathology in research and its other major action is always in diagnosis. Nevertheless, the methods of confirming a diagnosis are derived from earlier observations either from the field or research experiences, utilising pathology as one of the key instruments.
to measure tissue changes. Although the terminologies used in describing abnormality remains unchanged but the wandering path of pathology across research and diagnostic disciplines still remains validly warranted.

REFERENCES

Meandering Through the Superb Scientific World of Pathology

Noordin Mohamed Mustapha

Meandering Through the Superb Scientific World of Pathology

Noordin Mohamed Mustapha

Noordin Mohamed Mustapha

Meandering Through the Superb Scientific World of Pathology

Noordin Mohamed Mustapha

BIOGRAPHY

Noordin Mohamed Mustapha, a Penangite, was born on 26th May. He was among the last batch of schoolchildren who had their science and mathematics taught in English. Schooling years were at the Wellesley Primary School, Gelugor Secondary School, Jelutong Secondary School and Methodist Boys School, all in Penang. Noordin went on to graduate with a DVM and MSc (Biomedical Pharmacology) from Universiti Pertanian Malaysia and a PhD (Toxicopathology) from Murdoch University. He began his academic career (April 1986-September 1987) as a demonstrator for physiology, pharmacology and pathology practicals for the Doctor of Veterinary Medicine (DVM) and Diploma in Animal Health and Production (DAHP) students.

From October 1987 until January 1988, his teaching was focused only on pathology, to the DVM and DAHP students. From June 1992 to May 1995, apart from teaching pathology, he coordinated a course on public health for the DAHP students. However, beginning from May 1995, his lectures were confined to general and systemic pathology, to the DAHP, DVM and Biomedical students. He uses innovative teaching methods (creation of disease models and play/sketches) to inculcate long term memory in learning. These innovations were appreciated by UPM where the effort was bestowed UPM’s prestigious awards, namely, the Anugerah Pengajaran Putra (2009) & Vice-Chancellor’s Fellowship (2010). Noordin has also been an examiner for the final year DAHP, an external examiner for veterinary attendants at Institut Veterinar Malaysia, Kluang, and has been assisting with the running of the DVM final year comprehensive examinations.

In 2003, following his contributions on haze mitigation during sabbatical leave, he was conferred an honorary professorship by Lanzhou Medical College, China. Subsequently, Lanzhou
University (2008) awarded him their very first foreign adjunct professorship in Environmental and Nutritional Health under the prestigious Chui Yin’s chair. In June 2010, he was made the visiting professor to the Faculty of Veterinary Medicine, Hanoi University of Agriculture, Hanoi, Vietnam. Currently (2013-2017) Noordin is a fellow to the Centre for Animal Disease Control (CADIC), University of Miyazaki, Japan, a centre similar to the regional CDC in Japan.

Just prior to going on sabbatical leave in 2003, he was the Coordinator of the university’s Centre of Excellence for Ruminant Research and the faculty’s Scrutiny Board immediately upon completion of his term as the Head of the Department of the Veterinary Pathology and Microbiology, from November 2006 until October 2008 and December 2012- November 2015.

During his first tenure as the Head he successfully spearheaded the department, faculty and university to have the first two laboratories (Bacteriology and Biologics) in the nation’s institute of higher learning (IHL) accredited with ISO/IEC 17025. He also initiated an MoA between the University of Miyazaki, Japan with UPM in 2013.

Noordin is a panel member of the Ministry of Education FRGS, UPM and UMK Research Application Boards (Medicine and Veterinary Field) as well as a member of the Department of Veterinary Services Malaysia Veterinary Protocol documentation team.

As a full-time diagnostic pathologist, he has reported the nation’s first occurrences of caprine molybdenosis, selenium deficiency, canine distemper (seals), caprine-associated malignant catarrhal fever (deer), inclusion body disease in boids, caprine coenuriasis and caprine arthritis encephalitis and hepatogenous chronic copper poisoning.
Noordin Mohamed Mustapha

Noordin’s research interests encompass the effects of plant toxicity, air quality on health, BIBD, emerging and re-emerging diseases, nutraceuticals, nutrient excess or deficiency and the utilisation of chelation therapy in environmental intoxication, with particular emphasis on biochemical, histologic, ultrastructural and molecular correlations. Noordin has been invited seven(7) times to present reviews of current research at the international level. His knowledge in pathology with respect to other fields of study is always being utilised to the maximum (collaborative and networking projects). He has successfully guided more than 50 undergraduates for their final year projects. As for postgraduate studies, he has efficiently supervised 14 PhD and 13 MVSc/MS students. His supervision of both undergraduates and postgraduates is not only confined to this faculty but also extended to those from the Faculty of Food Science and Bioscience Institute. The fields supervised include nutritional pathology, environmental pathology, virology, bacteriology, parasitology, emerging diseases and nutraceuticals.

Noordin has been involved in several contract research projects dealing with herbal efficacy and toxicity. In view of his strength in nutraceutical research, a leader in Malaysian herbal products that is multinational in its market distribution appointed him as its International Technical/Scientific Advisory Board member. The role is not only to conduct research but to venture into opportunities in product improvement and innovation. Additionally, a subsidiary to the company, HEWO, has also appointed him as their panel board member.

Based on his extensive research in environmental health, his views and ideas have been sought by the School of Public Health, Lanzhou Medical College, Lanzhou, PR China, for assistance with their air pollution problem. The relationship has been very successful whereby the school, for the very first time, managed to
Meandering Through the Superb Scientific World of Pathology

secure one of the biggest research grants amounting to 500,000 RMB for a two year project. Due to his tireless efforts he was bestowed an honorary professorship to the school in 2003. Later, Noordin was awarded the most prestigious professorial chair (Chui Yin’s) of Lanzhou University, in the field of Environmental and Nutritional Health in 2007.

Noordin’s efforts in the academic field have been unequivocally balanced by active participation in professional and non-government organisations. He has been a business manager, secretary, subeditor of a local journal and also the secretariat for professional organisation’s conferences.
ACKNOWLEDGEMENTS

Glory to Allah most high, full of grace and mercy, HE created all and gave us a special place in HIS creation. HE honoured us to be HIS agents and endued us with knowledge and understanding, purified affections and spiritual insights so that we understand nature and ourselves. Alhamdulillah, the Almighty Creator has bestowed upon us a provision with HIS utmost graciousness and mercifulness, to be on the path of an educator who is promised to be perpetually blessed with baraqah.

I would like to extend my greatest gratitude to principal officers of UPM, led by Yang Berbahagia Profesor Datin Paduka Dr. Aini Ideris, for their effort and dedication in enabling UPM to soar upwards. A million thanks for the support and encouragement rendered by the faculty’s management team headed by Prof. Dr. Mohd Hair Bejo and his deputy Assoc. Prof. Dr. Zunita Zakaria, Assoc. Prof. Dr. Siti Suri Arshad, Assoc. Prof. Dr. Gurmeet Kaur Dhaliwal and the other six heads of departments.

Not to forget others from all walks of life who have directly or indirectly created a conducive environment within this faculty and UPM, pertaining to academic needs. I am deeply indebted to Prof. Dato’ Dr. Sheikh Omar Abdul Rahman, Prof. Dr. Mohd Ali Rajion, Prof. Dato’ Dr. Mohd Azmi Mohd Lila, Prof. Dr. Suhaila Mohamed, Prof. John McHowell and Allahyarham Prof. Dato’ Dr. Abdul Salam Abdullah, for their constant encouragement, patience and tolerance in guiding me towards building a successful academic career.

Not to forget my other colleagues at UPM, UMK, Lanzhou University, University of Miyazaki, Vietnam National University of Agriculture, University of Chulalongkorn, University of Tokyo, University of Cambridge and Cornell University, who share the same ideas, thoughts and determination in giving the very best to
the academic world, namely, Prof. Dr. Jasni Sabri, Prof. Dr. Mohd Azam Khan and Dr. K. Ragavan, Assoc. Prof. Dr. Rosnina Hj Yusoff, Prof. Niu Jinping, Prof. Ryoji Yamaguchi, Dr. Nguyen Thi Lan, Prof. Dr. Roongroje Thanawongnuwech, Prof. Hiroyuki Nakayama, Prof. Alun Williams and Prof. Gerard Duhamel. I am also grateful for the enthusiastic and competent technical aid of the postgraduates (Drs. Shizhen Zhang, Sanaz Movassagh, Latif Khadim, Kareem Jaafar, Ibrahim Abdulazees Okene, Omar Emad Ibrahim, Ajwad Assumaidae, Nabil Mirwan Althabet, Hemn Othman, Yasameen Shahib, Rabiu Aliyu, Nisha Ravindran, Yusuf Abba, Yusuf Ilyasu, Thoria Abdel Hameed, Nisha, Norina Lokman, Hasliza Hassim, Mazlina Mazlan, Imilia Ismail, Azlina Ahmad, Wan Mazlina Saad, Teh Rasyidah Rashid, Pham Hong Trang, Roslina Hassan) that has led to the churning of breakthroughs and publications.

I would further like to take this opportunity to thank all colleagues, especially those at the necropsy building, namely Mr. Ghazali Mohd Yusof, Mr. S. Apparao, Mr. Najib Yahya, Mrs. Jamilah Jahari, Mrs. Latifah Mohd Hanan, Dr. Mazlina Mazlan, Dr. Annas Salleh and Dr. Aliff Asri, for their understanding, generosity and kind cooperation. Thanks also to Mr. Muhammad Akees Abu Mansor, Mr. Wan Mohd Azwaar Wan Hassan, Ms. Amiratul Azlin Husaini Amir, Mr. Muhamad Zaid Nor Akahbar, Dr. Mazlina Mazlan, Dr. Annas Salleh and Dr. Mohd Faiz Nik Mohd Azmi for endeavouring to make this event a success.

Last but not least, my beloved wife Norizah Zakaria-Zainuddin, my children, Muhammad Noorhafiz Noordin, Norhidayah Noordin and Muhammad Noorhadi Noordin, my in-laws, niece and nephew for their unfailing support, encouragement and for accepting my frequent absences from the family that my commitment to this career has necessitated.
LIST OF INAUGURAL LECTURES

1. Prof. Dr. Sulaiman M. Yassin
 The Challenge to Communication Research in Extension
 22 July 1989

2. Prof. Ir. Abang Abdullah Abang Ali
 Indigenous Materials and Technology for Low Cost Housing
 30 August 1990

3. Prof. Dr. Abdul Rahman Abdul Razak
 Plant Parasitic Nematodes, Lesser Known Pests of Agricultural Crops
 30 January 1993

4. Prof. Dr. Mohamed Suleiman
 Numerical Solution of Ordinary Differential Equations: A Historical Perspective
 11 December 1993

5. Prof. Dr. Mohd. Ariff Hussein
 Changing Roles of Agricultural Economics
 5 March 1994

6. Prof. Dr. Mohd. Ismail Ahmad
 Marketing Management: Prospects and Challenges for Agriculture
 6 April 1994

7. Prof. Dr. Mohamed Mahyuddin Mohd. Dahan
 The Changing Demand for Livestock Products
 20 April 1994

8. Prof. Dr. Ruth Kiew
 Plant Taxonomy, Biodiversity and Conservation
 11 May 1994

9. Prof. Ir. Dr. Mohd. Zohadie Bardaie
 Engineering Technological Developments Propelling Agriculture into the 21st Century
 28 May 1994

10. Prof. Dr. Shamsuddin Jusop
 Rock, Mineral and Soil
 18 June 1994

11. Prof. Dr. Abdul Salam Abdullah
 Natural Toxicants Affecting Animal Health and Production
 29 June 1994

12. Prof. Dr. Mohd. Yusof Hussein
 Pest Control: A Challenge in Applied Ecology
 9 July 1994

13. Prof. Dr. Kapt. Mohd. Ibrahim Haji Mohamed
 Managing Challenges in Fisheries Development through Science and Technology
 23 July 1994

14. Prof. Dr. Hj. Amat Juhari Moain
 Sejarah Keagungan Bahasa Melayu
 6 August 1994

15. Prof. Dr. Law Ah Theem
 Oil Pollution in the Malaysian Seas
 24 September 1994

16. Prof. Dr. Md. Nordin Hj. Lajis
 Fine Chemicals from Biological Resources: The Wealth from Nature
 21 January 1995

17. Prof. Dr. Sheikh Omar Abdul Rahman
 Health, Disease and Death in Creatures Great and Small
 25 February 1995
Meandering Through the Superb Scientific World of Pathology

18. Prof. Dr. Mohamed Shariff Mohamed
 Fish Health: An Odyssey through the Asia - Pacific Region
 25 March 1995

19. Prof. Dr. Tengku Azmi Tengku Ibrahim
 Chromosome Distribution and Production Performance of Water Buffaloes
 6 May 1995

20. Prof. Dr. Abdul Hamid Mahmood
 Bahasa Melayu sebagai Bahasa Ilmu-Cabaran dan Harapan
 10 June 1995

21. Prof. Dr. Rahim Md. Sail
 Extension Education for Industrialising Malaysia: Trends, Priorities and Emerging Issues
 22 July 1995

22. Prof. Dr. Nik Muhammad Nik Abd. Majid
 The Diminishing Tropical Rain Forest: Causes, Symptoms and Cure
 19 August 1995

23. Prof. Dr. Ang Kok Jee
 The Evolution of an Environmentally Friendly Hatchery Technology for Udang Galah, the King of Freshwater Prawns and a Glimpse into the Future of Aquaculture in the 21st Century
 14 October 1995

24. Prof. Dr. Sharifuddin Haji Abdul Hamid
 Management of Highly Weathered Acid Soils for Sustainable Crop Production
 28 October 1995

25. Prof. Dr. Yu Swee Yean
 Fish Processing and Preservation: Recent Advances and Future Directions
 9 December 1995

26. Prof. Dr. Rosli Mohamad
 Pesticide Usage: Concern and Options
 10 February 1996

27. Prof. Dr. Mohamed Ismail Abdul Karim
 Microbial Fermentation and Utilization of Agricultural Bioresources and Wastes in Malaysia
 2 March 1996

28. Prof. Dr. Wan Sulaiman Wan Harun
 Soil Physics: From Glass Beads to Precision Agriculture
 16 March 1996

29. Prof. Dr. Abdul Aziz Abdul Rahman
 Sustained Growth and Sustainable Development: Is there a Trade-Off 1 or Malaysia
 13 April 1996

30. Prof. Dr. Chew Tek Ann
 Sharecropping in Perfectly Competitive Markets: A Contradiction in Terms
 27 April 1996

31. Prof. Dr. Mohd. Yusuf Sulaiman
 Back to the Future with the Sun
 18 May 1996

32. Prof. Dr. Abu Bakar Salleh
 Enzyme Technology: The Basis for Biotechnological Development
 8 June 1996

33. Prof. Dr. Kamel Ariffin Mohd. Atan
 The Fascinating Numbers
 29 June 1996

34. Prof. Dr. Ho Yin Wan
 Fungi: Friends or Foes
 27 July 1996

35. Prof. Dr. Tan Soon Guan
 Genetic Diversity of Some Southeast Asian Animals: Of Buffaloes and Goats and Fishes Too
 10 August 1996
Noordin Mohamed Mustapha

36. Prof. Dr. Nazaruddin Mohd. Jali
 Will Rural Sociology Remain Relevant in the 21st Century?
 21 September 1996

37. Prof. Dr. Abdul Rani Bahaman
 Leptospirosis: A Model for Epidemiology, Diagnosis and Control of Infectious Diseases
 16 November 1996

38. Prof. Dr. Marziah Mahmood
 Plant Biotechnology - Strategies for Commercialization
 21 December 1996

39. Prof. Dr. Ishak Hj. Omar
 Market Relationships in the Malaysian Fish Trade: Theory and Application
 22 March 1997

40. Prof. Dr. Suhaila Mohamad
 Food and Its Healing Power
 12 April 1997

41. Prof. Dr. Malay Raj Mukerjee
 A Distributed Collaborative Environment for Distance Learning Applications
 17 June 1998

42. Prof. Dr. Wong Kai Choo
 Advancing the Fruit Industry in Malaysia: A Need to Shift Research Emphasis
 15 May 1999

43. Prof. Dr. Aini Ideris
 Avian Respiratory and Immunosuppressive Diseases: A Fatal Attraction
 10 July 1999

44. Prof. Dr. Sariah Meon
 Biological Control of Plant Pathogens: Harnessing the Richness of Microbial Diversity
 14 August 1999

45. Prof. Dr. Azizah Hashim
 The Endomycorrhiza: A Futile Investment?
 23 October 1999

46. Prof. Dr. Noraini Abdul Samad
 Molecular Plant Virology: The Way Forward
 2 February 2000

47. Prof. Dr. Muhamad Awang
 Do We Have Enough Clean Air to Breathe?
 7 April 2000

48. Prof. Dr. Lee Chnoong Kheng
 Green Environment, Clean Power
 24 June 2000

49. Prof. Dr. Mohd. Ghazali Mohayidin
 Managing Change in the Agriculture Sector: The Need for Innovative Educational Initiatives
 12 January 2002

50. Prof. Dr. Fatimah Mohd. Arshad
 Analisis Pemasaran Pertanian di Malaysia: Keperluan Agenda Pembaharuan
 26 January 2002

51. Prof. Dr. Nik Mustapha R. Abdullah
 Fisheries Co-Management: An Institutional Innovation Towards Sustainable Fisheries Industry
 28 February 2002

52. Prof. Dr. Gulam Rusul Rahmat Ali
 Food Safety: Perspectives and Challenges
 23 March 2002

53. Prof. Dr. Zaharah A. Rahman
 Nutrient Management Strategies for Sustainable Crop Production in Acid Soils: The Role of Research Using Isotopes
 13 April 2002
Meandering Through the Superb Scientific World of Pathology

54. Prof. Dr. Maisom Abdullah

Productivity Driven Growth: Problems & Possibilities
27 April 2002

55. Prof. Dr. Wan Omar Abdullah

Immunodiagnosis and Vaccination for Brugian Filariasis: Direct Rewards from Research Investments
6 June 2002

56. Prof. Dr. Syed Tajuddin Syed Hassan

Agro-ento Bioinformation: Towards the Edge of Reality
22 June 2002

57. Prof. Dr. Dahlan Ismail

Sustainability of Tropical Animal-Agricultural Production Systems: Integration of Dynamic Complex Systems
27 June 2002

58. Prof. Dr. Ahmad Zabaidi

Baharumshah: The Economics of Exchange Rates in the East Asian Countries
26 October 2002

59. Prof. Dr. Shaik Md. Noor Alam S.M. Hussain

Contractual Justice in Asean: A Comparative View of Coercion
31 October 2002

60. Prof. Dr. Wan Md. Zin Wan Yunus

Chemical Modification of Polymers: Current and Future Routes for Synthesizing New Polymeric Compounds
9 November 2002

61. Prof. Dr. Annuar Md. Nassir

Is the KLSE Efficient? Efficient Market Hypothesis vs Behavioural Finance
23 November 2002

62. Prof. Ir. Dr. Radin Umar Radin Sohadi

Road Safety Interventions in Malaysia: How Effective Are They?
21 February 2003

63. Prof. Dr. Shamsher Mohamad

The New Shares Market: Regulatory Intervention, Forecast Errors and Challenges
26 April 2003

64. Prof. Dr. Han Chun Kwong

Blueprint for Transformation or Business as Usual? A Structurational Perspective of the Knowledge-Based Economy in Malaysia
31 May 2003

65. Prof. Dr. Mawardi Rahmani

Chemical Diversity of Malaysian Flora: Potential Source of Rich Therapeutic Chemicals
26 July 2003

66. Prof. Dr. Fatimah Md. Yusoff

An Ecological Approach: A Viable Option for Aquaculture Industry in Malaysia
9 August 2003

67. Prof. Dr. Mohamed Ali Rajion

The Essential Fatty Acids-Revisited
23 August 2003

68. Prof. Dr. Azhar Md. Zain

Psychotherapy for Rural Malays - Does it Work?
13 September 2003

69. Prof. Dr. Mohd. Zamri Saad

Respiratory Tract Infection: Establishment and Control
27 September 2003

70. Prof. Dr. Jinap Selamat

Cocoa-Wonders for Chocolate Lovers
14 February 2004
71. Prof. Dr. Abdul Halim Shaari
 High Temperature Superconductivity: Puzzle & Promises
 13 March 2004

72. Prof. Dr. Yaakob Che Man
 Oils and Fats Analysis - Recent Advances and Future Prospects
 27 March 2004

73. Prof. Dr. Kaida Khalid
 Microwave Aquametry: A Growing Technology
 24 April 2004

74. Prof. Dr. Hasanah Mohd. Ghazali
 Tapping the Power of Enzymes-Greening the Food Industry
 11 May 2004

75. Prof. Dr. Yusof Ibrahim
 The Spider Mite Saga: Quest for Biorational Management Strategies
 22 May 2004

76. Prof. Datin Dr. Sharifah Md. Nor
 The Education of At-Risk Children: The Challenges Ahead
 26 June 2004

77. Prof. Dr. Ir. Wan Ishak Wan Ismail
 Agricultural Robot: A New Technology Development for Agro-Based Industry
 14 August 2004

78. Prof. Dr. Ahmad Said Sajap
 Insect Diseases: Resources for Biopesticide Development
 28 August 2004

79. Prof. Dr. Aminah Ahmad
 The Interface of Work and Family Roles: A Quest for Balanced Lives
 11 March 2005

80. Prof. Dr. Abdul Razak Alimon
 Challenges in Feeding Livestock: From Wastes to Feed
 23 April 2005

81. Prof. Dr. Haji Azimi Hj. Hamzah
 Helping Malaysian Youth Move Forward: Unleashing the Prime Enablers
 29 April 2005

82. Prof. Dr. Rasedee Abdullah
 In Search of An Early Indicator of Kidney Disease
 27 May 2005

83. Prof. Dr. Zulkifli Hj. Shamsuddin
 Smart Partnership: Plant-Rhizobacteria Associations
 17 June 2005

84. Prof. Dr. Mohd Khanif Yusop
 From the Soil to the Table
 1 July 2005

85. Prof. Dr. Annuar Kassim
 Materials Science and Technology: Past, Present and the Future
 8 July 2005

86. Prof. Dr. Othman Mohamed
 Enhancing Career Development Counselling and the Beauty of Career Games
 12 August 2005

87. Prof. Ir. Dr. Mohd Amin Mohd Soom
 Engineering Agricultural Water Management Towards Precision Framing
 26 August 2005

88. Prof. Dr. Mohd Arif Syed
 Bioremediation-A Hope Yet for the Environment?
 9 September 2005

89. Prof. Dr. Abdul Hamid Abdul Rashid
 The Wonder of Our Neuromotor System and the Technological Challenges They Pose
 23 December 2005
90. Prof. Dr. Norhani Abdullah
Rumen Microbes and Some of Their Biotechnological Applications
27 January 2006

91. Prof. Dr. Abdul Aziz Saharee
Haemorrhagic Septicaemia in Cattle and Buffaloes: Are We Ready for Freedom?
24 February 2006

92. Prof. Dr. Kamariah Abu Bakar
Activating Teachers’ Knowledge and Lifelong Journey in Their Professional Development
3 March 2006

93. Prof. Dr. Borhanuddin Mohd. Ali
Internet Unwired
24 March 2006

94. Prof. Dr. Sundararajan Thilagar
Development and Innovation in the Fracture Management of Animals
31 March 2006

95. Prof. Dr. Zainal Aznam Md. Jelan
Strategic Feeding for a Sustainable Ruminant Farming
19 May 2006

96. Prof. Dr. Mahiran Basri
Green Organic Chemistry: Enzyme at Work
14 July 2006

97. Prof. Dr. Malik Hj. Abu Hassan
Towards Large Scale Unconstrained Optimization
20 April 2007

98. Prof. Dr. Khalid Abdul Rahim
Trade and Sustainable Development: Lessons from Malaysia’s Experience
22 June 2007

99. Prof. Dr. Mad Nasir Shamsudin
Econometric Modelling for Agricultural Policy Analysis and Forecasting: Between Theory and Reality
13 July 2007

100. Prof. Dr. Zainal Abidin Mohamed
Managing Change - The Fads and The Realities: A Look at Process Reengineering, Knowledge Management and Blue Ocean Strategy
9 November 2007

101. Prof. Ir. Dr. Mohamed Daud
Expert Systems for Environmental Impacts and Ecotourism Assessments
23 November 2007

102. Prof. Dr. Saleha Abdul Aziz
Pathogens and Residues; How Safe is Our Meat?
30 November 2007

103. Prof. Dr. Jayum A. Jawan
Hubungan Sesama Manusia
7 December 2007

104. Prof. Dr. Zakariah Abdul Rashid
Planning for Equal Income Distribution in Malaysia: A General Equilibrium Approach
28 December 2007

105. Prof. Datin Paduka Dr. Khatijah Yusoff
Newcastle Disease virus: A Journey from Poultry to Cancer
11 January 2008

106. Prof. Dr. Dzulkefly Kuang Abdullah
Palm Oil: Still the Best Choice
1 February 2008

107. Prof. Dr. Elias Saion
Probing the Microscopic Worlds by Ionizing Radiation
22 February 2008
Noordin Mohamed Mustapha

108. Prof. Dr. Mohd Ali Hassan
Waste-to-Wealth Through Biotechnology: For Profit, People and Planet
28 March 2008

109. Prof. Dr. Mohd Maarof H. A. Moksin
Metrology at Nanoscale: Thermal Wave Probe Made It Simple
11 April 2008

110. Prof. Dr. Dzolkhifli Omar
The Future of Pesticides Technology in Agriculture: Maximum Target Kill with Minimum Collateral Damage
25 April 2008

111. Prof. Dr. Mohd. Yazid Abd. Manap
Probiotics: Your Friendly Gut Bacteria
9 May 2008

112. Prof. Dr. Hamami Sahri
Sustainable Supply of Wood and Fibre: Does Malaysia have Enough?
23 May 2008

113. Prof. Dato’ Dr. Makhzdizir Mardan
Connecting the Bee Dots
20 June 2008

114. Prof. Dr. Maimunah Ismail
Gender & Career: Realities and Challenges
25 July 2008

115. Prof. Dr. Nor Aripin Shamaan
Biochemistry of Xenobiotics: Towards a Healthy Lifestyle and Safe Environment
1 August 2008

116. Prof. Dr. Mohd Yunus Abdullah
Penjagaan Kesihatan Primer di Malaysia: Cabaran Prospek dan Implikasi dalam Latihan dan Penyelidikan Perubatan serta Sains Kesihatan di Universiti Putra Malaysia
8 August 2008

117. Prof. Dr. Musa Abu Hassan
Memanfaatkan Teknologi Maklumat & Komunikasi ICT untuk Semua
15 August 2008

118. Prof. Dr. Md. Salleh Hj. Hassan
Role of Media in Development: Strategies, Issues & Challenges
22 August 2008

119. Prof. Dr. Jariah Masud
Gender in Everyday Life
10 October 2008

120 Prof. Dr. Mohd Shahwahid Haji Othman
Mainstreaming Environment: Incorporating Economic Valuation and Market-Based Instruments in Decision Making
24 October 2008

121. Prof. Dr. Son Radu
Big Questions Small Worlds: Following Diverse Vistas
31 October 2008

122. Prof. Dr. Russly Abdul Rahman
Responding to Changing Lifestyles: Engineering the Convenience Foods
28 November 2008

123. Prof. Dr. Mustafa Kamal Mohd Shariff
Aesthetics in the Environment an Exploration of Environmental Perception Through Landscape Preference
9 January 2009

124. Prof. Dr. Abu Daud Silong
Leadership Theories, Research & Practices: Farming Future Leadership Thinking
16 January 2009
<table>
<thead>
<tr>
<th>Lecture Number</th>
<th>Presenter</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>Prof. Dr. Azni Idris</td>
<td>Waste Management, What is the Choice: Land Disposal or Biofuel?</td>
<td>23 January</td>
</tr>
<tr>
<td>126</td>
<td>Prof. Dr. Jamilah Bakar</td>
<td>Freshwater Fish: The Overlooked Alternative</td>
<td>30 January</td>
</tr>
<tr>
<td>127</td>
<td>Prof. Dr. Mohd. Zobir Hussein</td>
<td>The Chemistry of Nanomaterial and Nanobiomaterial</td>
<td>6 February</td>
</tr>
<tr>
<td>128</td>
<td>Prof. Ir. Dr. Lee Teang Shui</td>
<td>Engineering Agricultural: Water Resources</td>
<td>20 February</td>
</tr>
<tr>
<td>129</td>
<td>Prof. Dr. Ghizan Saleh</td>
<td>Crop Breeding: Exploiting Genes for Food and Feed</td>
<td>6 March</td>
</tr>
<tr>
<td>130</td>
<td>Prof. Dr. Muzafar Shah Habibullah</td>
<td>Money Demand</td>
<td>27 March</td>
</tr>
<tr>
<td>131</td>
<td>Prof. Dr. Karen Anne Crouse</td>
<td>In Search of Small Active Molecules</td>
<td>3 April</td>
</tr>
<tr>
<td>132</td>
<td>Prof. Dr. Turiman Suandi</td>
<td>Volunteerism: Expanding the Frontiers of Youth Development</td>
<td>17 April</td>
</tr>
<tr>
<td>133</td>
<td>Prof. Dr. Arbakariya Ariff</td>
<td>Industrializing Biotechnology: Roles of Fermentation and Bioprocess Technology</td>
<td>8 May</td>
</tr>
<tr>
<td>134</td>
<td>Prof. Ir. Dr. Desa Ahmad</td>
<td>Mechanics of Tillage Implements</td>
<td>12 June</td>
</tr>
<tr>
<td>135</td>
<td>Prof. Dr. W. Mahmood Mat Yunus</td>
<td>Photothermal and Photoacoustic: From Basic Research to Industrial Applications</td>
<td>10 July</td>
</tr>
<tr>
<td>136</td>
<td>Prof. Dr. Taufiq Yap Yun Hin</td>
<td>Catalysis for a Sustainable World</td>
<td>7 August</td>
</tr>
<tr>
<td>137</td>
<td>Prof. Dr. Raja Noor Zaliha Raja</td>
<td>Abd. Rahman, Microbial Enzymes: From Earth to Space</td>
<td>9 October</td>
</tr>
<tr>
<td>138</td>
<td>Prof. Ir. Dr. Barkawi Sahari</td>
<td>Materials, Energy and CNGDI Vehicle Engineering</td>
<td>6 November</td>
</tr>
<tr>
<td>139</td>
<td>Prof. Dr. Zulkifi Idrus</td>
<td>Poultry Welfare in Modern Agriculture: Opportunity or Threat?</td>
<td>13 November</td>
</tr>
<tr>
<td>140</td>
<td>Prof. Dr. Mohamed Hanafi Musa</td>
<td>Managing Phosphorus: Under Acid Soils Environment</td>
<td>8 January</td>
</tr>
<tr>
<td>141</td>
<td>Prof. Dr. Abdul Manan Mat Jais</td>
<td>Haruan Channa striatus a Drug Discovery in an Agro-Industry Setting</td>
<td>12 March</td>
</tr>
<tr>
<td>142</td>
<td>Prof. Dr. Bujang bin Kim Huat</td>
<td>Problematic Soils: In Search for Solution</td>
<td>19 March</td>
</tr>
<tr>
<td>143</td>
<td>Prof. Dr. Samsinar Md Sidin</td>
<td>Family Purchase Decision Making: Current Issues & Future Challenges</td>
<td>16 April</td>
</tr>
</tbody>
</table>
144. Prof. Dr. Mohd Adzir Mahdi
Lightspeed: Catch Me If You Can
4 June 2010

145. Prof. Dr. Raha Hj. Abdul Rahim
Designer Genes: Fashioning Mission Purposed Microbes
18 June 2010

146. Prof. Dr. Hj. Hamidon Hj. Basri
A Stroke of Hope, A New Beginning
2 July 2010

147. Prof. Dr. Hj. Kamaruzaman Jusoff
Going Hyperspectral: The "Unseen" Captured?
16 July 2010

148. Prof. Dr. Mohd Sapuan Salit
Concurrent Engineering for Composites
30 July 2010

149. Prof. Dr. Shattri Mansor
Google the Earth: What's Next?
15 October 2010

150. Prof. Dr. Mohd Basyaruddin Abdul Rahman
Haute Couture: Molecules & Biocatalysts
29 October 2010

151. Prof. Dr. Mohd. Hair Bejo
Poultry Vaccines: An Innovation for Food Safety and Security
12 November 2010

152. Prof. Dr. Umi Kalsom Yusuf
Fern of Malaysian Rain Forest
3 December 2010

153. Prof. Dr. Ab. Rahim Bakar
Preparing Malaysian Youths for The World of Work: Roles of Technical and Vocational Education and Training (TVET)
14 January 2011

154. Prof. Dr. Seow Heng Fong
Are there "Magic Bullets" for Cancer Therapy?
11 February 2011

155. Prof. Dr. Mohd Azmi Mohd Lila
Biopharmaceuticals: Protection, Cure and the Real Winner
18 February 2011

156. Prof. Dr. Siti Shapor Siraj
Genetic Manipulation in Farmed Fish: Enhancing Aquaculture Production
25 March 2011

157. Prof. Dr. Ahmad Ismail
Coastal Biodiversity and Pollution: A Continuous Conflict
22 April 2011

158. Prof. Ir. Dr. Norman Mariun
Energy Crisis 2050? Global Scenario and Way Forward for Malaysia
10 June 2011

159. Prof. Dr. Mohd Razi Ismail
Managing Plant Under Stress: A Challenge for Food Security
15 July 2011

160. Prof. Dr. Patimah Ismail
Does Genetic Polymorphisms Affect Health?
23 September 2011

161. Prof. Dr. Sidek Ab. Aziz
Wonders of Glass: Synthesis, Elasticity and Application
7 October 2011

162. Prof. Dr. Azizah Osman
Fruits: Nutritious, Colourful, Yet Fragile Gifts of Nature
14 October 2011
Meandering Through the Superb Scientific World of Pathology

163. Prof. Dr. Mohd. Fauzi Ramlan
Climate Change: Crop Performance and Potential
11 November 2011

164. Prof. Dr. Adem Kiliçman
Mathematical Modeling with Generalized Function
25 November 2011

165. Prof. Dr. Fauziah Othman
My Small World: In Biomedical Research
23 December 2011

166. Prof. Dr. Japar Sidik Bujang
The Marine Angiosperms, Seagrass
23 March 2012

167. Prof. Dr. Zailina Hashim
Air Quality and Children’s Environmental Health: Is Our Future Generation at Risk?
30 March 2012

168. Prof. Dr. Zainal Abidin Mohamed
Where is the Beef? Vantage Point from the Livestock Supply Chain
27 April 2012

169. Prof. Dr. Jothi Malar Panandam
Genetic Characterisation of Animal Genetic Resources for Sustainabile Utilisation and Development
30 November 2012

170. Prof. Dr. Fatimah Abu Bakar
The Good The Bad & Ugly of Food Safety: From Molecules to Microbes
7 December 2012

171. Prof. Dr. Abdul Jalil Nordin
My Colourful Sketches from Scratch: Molecular Imaging
5 April 2013

172. Prof. Dr. Norlijah Othman
Lower Respiratory Infections in Children: New Pathogens, Old Pathogens and The Way Forward
19 April 2013

173. Prof. Dr. Jayakaran Mukundan
Steroid-like Prescriptions English Language Teaching Can Ill-afford
26 April 2013

174. Prof. Dr. Azmi Zakaria
Photothermals Affect Our Lives
7 June 2013

175. Prof. Dr. Rahinah Ibrahim
Design Informatics
21 June 2013

176. Prof. Dr. Gwendoline Ee Cheng
Natural Products from Malaysian Rainforests
1 November 2013

177. Prof. Dr. Noor Akma Ibrahim
The Many Facets of Statistical Modeling
22 November 2013

178. Prof. Dr. Paridah Md. Tahir
Bonding with Natural Fibres
6 December 2013

179. Prof. Dr. Abd. Wahid Haron
Livestock Breeding: The Past, The Present and The Future
9 December 2013

180. Prof. Dr. Aziz Arshad
Exploring Biodiversity & Fisheries Biology: A Fundamental Knowledge for Sustainable Fish Production
24 January 2014

181. Prof. Dr. Mohd Mansor Ismail
Competitiveness of Beekeeping Industry in Malaysia
21 March 2014
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>182</td>
<td>Food and Wealth from the Seas: Health Check for the Marine Fisheries of Malaysia</td>
<td>Prof. Dato' Dr. Tai Shzee Yew</td>
<td>25 April 2014</td>
</tr>
<tr>
<td>183</td>
<td>Waste to Health: Organic Waste Management for Sustainable Soil Management and Crop Production</td>
<td>Prof. Datin Dr. Rosenani Abu Bakar</td>
<td>9 May 2014</td>
</tr>
<tr>
<td>184</td>
<td>Poultry Viruses: From Threat to Therapy</td>
<td>Prof. Dr. Abdul Rahman Omar</td>
<td>23 May 2014</td>
</tr>
<tr>
<td>185</td>
<td>Tracing the Untraceable: Fingerprinting Pollutants through Environmental Forensics</td>
<td>Prof. Dr. Mohamad Pauzi Zakaria</td>
<td>13 June 2014</td>
</tr>
<tr>
<td>186</td>
<td>Space System Trade-offs: Towards Spacecraft Synergisms</td>
<td>Prof. Dr. -Ing. Ir. Renuganth Varatharajoo</td>
<td>15 August 2014</td>
</tr>
<tr>
<td>187</td>
<td>Transformasi Kesihatan Wanita ke Arah Kesejahteraan Komuniti</td>
<td>Prof. Dr. Latiffah A. Latiff</td>
<td>7 November 2014</td>
</tr>
<tr>
<td>188</td>
<td>Fat and Oils for a Healthier Future: Makro, Micro and Nanoscales</td>
<td>Prof. Dr. Tan Chin Ping</td>
<td>21 November 2014</td>
</tr>
<tr>
<td>189</td>
<td>Lignocellulosic Biofuel: A Way Forward</td>
<td>Prof. Dr. Suraini Abd. Aziz</td>
<td>28 November 2014</td>
</tr>
<tr>
<td>190</td>
<td>Biobased Lubricants: Harnessing the Richness of Agriculture Resources</td>
<td>Prof. Dr. Robiah Yunus</td>
<td>30 January 2015</td>
</tr>
<tr>
<td>191</td>
<td>Discovering Future Cures from Phytochemistry to Metabolomics</td>
<td>Prof. Dr. Khozirah Shaari</td>
<td>13 February 2015</td>
</tr>
<tr>
<td>192</td>
<td>Population Ageing in Malaysia: A Mosaic of Issues, Challenges and Prospects</td>
<td>Prof. Dr. Tengku Aizan Tengku Abdul Hamid</td>
<td>13 March 2015</td>
</tr>
<tr>
<td>193</td>
<td>Forest Biodiversity: Importance of Species Composition Studies</td>
<td>Prof. Datin Dr. Faridah Hanum Ibrahim</td>
<td>27 March 2015</td>
</tr>
<tr>
<td>194</td>
<td>Feeding & Nutritional Requirements of Young Fish</td>
<td>Prof. Dr. Mohd Salleh Kamarudin</td>
<td>10 April 2015</td>
</tr>
<tr>
<td>195</td>
<td>Money Boy: Masalah Sosial Era Generasi Y</td>
<td>Prof. Dato' Dr. Mohammad Shatar Sabran</td>
<td>8 Mei 2015</td>
</tr>
<tr>
<td>196</td>
<td>Developing Students' Mathematical Thinking: How Far Have We Come?</td>
<td>Prof. Dr. Aida Suraya Md. Yunus</td>
<td>5 June 2015</td>
</tr>
<tr>
<td>197</td>
<td>Malaysian Cocoa or Chocolates: A Story of Antioxidants and More...</td>
<td>Prof. Dr. Amin Ismail</td>
<td>14 August 2015</td>
</tr>
<tr>
<td>198</td>
<td>Casting Technology: Sustainable Metal Forming Process</td>
<td>Prof. Dr. Shamsuddin Sulaimain</td>
<td>21 August 2015</td>
</tr>
<tr>
<td>199</td>
<td>Journey into Genetic: Taking the Twist and Turns of Life</td>
<td>Prof. Dr. Rozita Rosli</td>
<td>23 October 2015</td>
</tr>
</tbody>
</table>
Meandering Through the Superb Scientific World of Pathology

200. Prof. Dr. Nor Aini Ab Shukor
 The Un(Straight) Truth About Trees
 6 November 2015

201. Prof. Dr. Maznah Ismail
 Germinated Brown Rice and Bioactive Rich Fractions: On Going Journey from R&D to Commercialisation
 29 April 2016

202. Prof. Dr. Habshah Midi
 Amazing Journey to Robust Statistics Discovering Outliers for Efficient Prediction
 6 May 2016

203. Prof. Dr. Mansor Ahmad @ Ayob
 Going Green with Bionanocomposites
 27 May 2016

204. Prof. Dr. Fudziah Ismail
 Exploring Efficient Numerical Methods for Differential Equations
 23 September 2016